Cell type-specific gene expression patterns are outputs of transcriptional gene regulatory networks (GRNs) that connect transcription factors and signaling proteins to target genes. Single-cell technologies such as single cell RNA-sequencing (scRNA-seq) and single cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq), can examine cell-type specific gene regulation at unprecedented detail. However, current approaches to infer cell type-specific GRNs are limited in their ability to integrate scRNA-seq and scATAC-seq measurements and to model network dynamics on a cell lineage.
View Article and Find Full Text PDFSingle-cell RNA-sequencing (scRNA-seq) offers unparalleled insight into the transcriptional programs of different cellular states by measuring the transcriptome of thousands of individual cells. An emerging problem in the analysis of scRNA-seq is the inference of transcriptional gene regulatory networks and a number of methods with different learning frameworks have been developed to address this problem. Here, we present an expanded benchmarking study of eleven recent network inference methods on seven published scRNA-seq datasets in human, mouse, and yeast considering different types of gold standard networks and evaluation metrics.
View Article and Find Full Text PDFOur inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete profiles are converted to pCNS progenitors (pCNSPs).
View Article and Find Full Text PDFElucidating the mechanism of reprogramming is confounded by heterogeneity due to the low efficiency and differential kinetics of obtaining induced pluripotent stem cells (iPSCs) from somatic cells. Therefore, we increased the efficiency with a combination of epigenomic modifiers and signaling molecules and profiled the transcriptomes of individual reprogramming cells. Contrary to the established temporal order, somatic gene inactivation and upregulation of cell cycle, epithelial, and early pluripotency genes can be triggered independently such that any combination of these events can occur in single cells.
View Article and Find Full Text PDFMitochondrial DNA B Resour
May 2018
Here, we report the complete mitochondrial genome of the endangered Hine's emerald dragonfly (HED), Williamson. Data were generated via next generation sequencing (NGS) and assembled using a mitochondrial baiting and iterative mapping approach. The full length circular genome is 15,705 bp with 26.
View Article and Find Full Text PDFBigheaded carps are invasive fishes threatening to invade the Great Lakes basin and establish spawning populations, and have been monitored using environmental DNA (eDNA). Not only does eDNA hold potential for detecting the presence of species, but may also allow for quantitative comparisons like relative abundance of species across time or space. We examined the relationships among bigheaded carp movement, hydrography, spawning and eDNA on the Wabash River, IN, USA.
View Article and Find Full Text PDF