A major challenge in neuroscience is visualizing the structure of the human brain at different scales. Traditional histology reveals micro- and meso-scale brain features but suffers from staining variability, tissue damage, and distortion, which impedes accurate 3D reconstructions. The emerging label-free serial sectioning optical coherence tomography (S-OCT) technique offers uniform 3D imaging capability across samples but has poor histological interpretability despite its sensitivity to cortical features.
View Article and Find Full Text PDFA major challenge in neuroscience is to visualize the structure of the human brain at different scales. Traditional histology reveals micro- and meso-scale brain features, but suffers from staining variability, tissue damage and distortion that impedes accurate 3D reconstructions. Here, we present a new 3D imaging framework that combines serial sectioning optical coherence tomography (S-OCT) with a deep-learning digital staining (DS) model.
View Article and Find Full Text PDFBackground: Atherosclerosis is an arterial vessel wall disease characterized by slow, progressive lipid accumulation, smooth muscle disorganization, and inflammatory infiltration. Atherosclerosis often remains subclinical until extensive inflammatory injury promotes vulnerability of the atherosclerotic plaque to rupture with luminal thrombosis, which can cause the acute event of myocardial infarction or stroke. Current bioimaging techniques are unable to capture the pathognomonic distribution of cellular elements of the plaque and thus cannot accurately define its structural disorganization.
View Article and Find Full Text PDF