The droplet-based electricity generator (DEG) has facilitated efficient droplet energy harvesting, yet diversifying its applications necessitates the incorporation of various to the DEG. This study first proposes a methodology for advancing the DEG by substituting its conventional metallic electrode with electrically conductive water electrode (WE), which is spontaneously generated during the operation of the DEG with operating liquid. Due to the inherent conductive and fluidic nature of water, the introduction of the WE maintains the electrical output performance of the DEG while imparting functionalities such as high transparency and flexibility.
View Article and Find Full Text PDFA droplet possesses the ubiquity and potential to harvest a vast amount of energy. To exploit droplets effectively, a novel output enhancement strategy that can coexist and create synergy with the recently studied droplet-based electricity generator (DEG) and material/surface structure modification must be investigated. In this study, a mechanical buckling-based 4D printed elastic hybrid droplet-based electricity generator (HDEG) consisting of a DEG and solid-solid triboelectric nanogenerator (S-S TENG) is first presented.
View Article and Find Full Text PDFThe triboelectric series is a generally accepted method for describing the triboelectric effect. It provides a way to control the double face of the ubiquitous triboelectric effect: causes of unpredictable accidents and the resultant surface charge as energy sources. However, previous studies have been biased in solids despite being observed in liquids (liquid-solid contact electrification).
View Article and Find Full Text PDFRenewable energy harvesting technologies have been actively studied in recent years for replacing rapidly depleting energies, such as coal and oil energy. Among these technologies, the triboelectric nanogenerator (TENG), which is operated by contact-electrification, is attracting close attention due to its high accessibility, light weight, high shape adaptability, and broad applications. The characteristics of the contact layer, where contact electrification phenomenon occurs, should be tailored to enhance the electrical output performance of TENG.
View Article and Find Full Text PDF