Biotite, a phyllosilicate mineral, possesses significant potential for cesium (Cs) adsorption owing to its negative surface charge, specific surface area (SSA), and frayed edge sites (FES). Notably, FES are known to play an important role in the adsorption of Cs. The objectives of this study were to investigate the Cs adsorption capacity and behavior of artificially weathered biotite and identify mineralogical characteristics for the development of an eco-friendly geologically-based Cs adsorbent.
View Article and Find Full Text PDFOpaline mudstone (OM) composed of opal-CT (SiO·nHO) has high potential use as a cesium (Cs) adsorbent, due to its high specific surface area (SSA). The objective of this study was to investigate the Cs adsorption capacity of chemically activated OM and the adsorption mechanism based on its physico-chemical properties. We used acid- and base-activation methods for the surface modification of OM.
View Article and Find Full Text PDFMicrobially induced calcium carbonate precipitation (MICP) is a bio-geochemical process involving calcium carbonate precipitation and possible co-precipitation of other metals. The study investigated the extent to which a urease-positive bacterium, , can tolerate a range of metals (e.g.
View Article and Find Full Text PDFBiotite and illite have excellent cesium (Cs) adsorption capacity due to their negative charges in addition to adsorption sites of the planar, interlayer, and frayed edge sites (FES). The aim of this study is to investigate the Cs adsorption capacity using acid- and base-activated biotite and illite based on their mineralogical characteristics. The acid-activated biotite and base-activated illite exhibited high Cs removal efficiency from the low-level Cs-containing DI water (97.
View Article and Find Full Text PDF