Lidocaine hydrochloride is used as an anesthetic for clinical applications. This study considers the effects of the substitution of 2% lidocaine hydrochloride for deionized (DI) water on the rheological, mechanical, ion release, pH and injectable properties of two formulations of aluminum-free glass polyalkenoate cements (GPCs) using two distinct poly(acrylic) acids (PAA), E9 and E11, which have different molecular weights (Mw). The substitution of 2% lidocaine hydrochloride demonstrated increased injectability, but did not affect mechanical properties.
View Article and Find Full Text PDFMetastatic bone lesions are often osteolytic, which causes advanced-stage cancer sufferers to experience severe pain and an increased risk of developing a pathological fracture. Gallium (Ga) ion possesses antineoplastic and anti-bone resorption properties, suggesting the potential for its local administration to impede the growth of metastatic bone lesions. This study investigated the chemotherapeutic potential, cytotoxicity, and osteogenic effects of a Ga-doped glass polyalkenoate cement (GPC) (C-TA2) compared to its non-gallium (C-TA0) counterpart.
View Article and Find Full Text PDFMetastatic bone lesions are common among patients with advanced cancers. While chemotherapy and radiotherapy may be prescribed immediately after diagnosis, the majority of severe metastatic bone lesions are treated by reconstructive surgery, which, in some cases, is followed by postoperative radiotherapy or chemotherapy. However, despite recent advancements in orthopedic surgery, patients undergoing reconstruction still have the risk of developing severe complications such as tumor recurrence and reconstruction failure.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
February 2020
A titanium-containing borate glass series based on the system (52-X) BO-12CaO-6PO-14NaO-16ZnO-XTiO with X varying from 0, 5 and 15 mol% of TiO incorporated, identified as BRT0, BRT1 and BRT3, respectively, were used in this study. Scaffolds (pore sizes, 165-230 μm and porosity, 53.51-69.
View Article and Find Full Text PDFSilica-based and borate-based glass series, with increasing amounts of TiO₂ incorporated, are characterized in terms of their mechanical properties relevant to their use as metallic coating materials. It is observed that borate-based glasses exhibit CTE (Coefficient of Thermal Expansion) closer to the substrate's (Ti6Al4V) CTE, translating into higher mode I critical strain energy release rates of glasses and compressive residual stresses and strains at the coating/substrate interface, outperforming the silica-based glasses counterparts. An increase in the content of TiO₂ in the glasses results in an increase in the mode I critical strain energy release rate for both the bulk glass and for the coating/substrate system, proving that the addition of TiO₂ to the glass structure enhances its toughness, while decreasing its bulk hardness.
View Article and Find Full Text PDF