We describe the use of plant-made β-defensins as effective antimicrobial substances for controlling salmonellosis, a deadly infection caused by Salmonella typhimurium (referred to further as S. typhi). Human β-defensin-1 (hBD-1) and -2 (hBD-2) were expressed under the control of strong constitutive promoters in tobacco plants, and bio-active β-defensins were successfully extracted.
View Article and Find Full Text PDFWe successfully produced two human β-defensins (hBD-1 and hBD-2) in bacteria as functional peptides and tested their antibacterial activities against Salmonella enterica serovar Typhi, Escherichia coli, and Staphylococcus aureus employing both spectroscopic and viable CFU count methods. Purified peptides showed approximately 50% inhibition of the bacterial population when used individually and up to 90% when used in combination. The 50% lethal doses (LD50) of hBD-1 against S.
View Article and Find Full Text PDFWe developed an efficient chimeric promoter, MUASMSCP, with enhanced activity and salicylic acid (SA)/abscisic acid (ABA) inducibility, incorporating the upstream activation sequence (UAS) of Mirabilis mosaic virus full-length transcript (MUAS, -297 to -38) to the 5' end of Mirabilis mosaic virus sub-genomic transcript (MSCP, -306 to -125) promoter-fragment containing the TATA element. We compared the transient activity of the MUASMSCP promoter in tobacco/Arabidopsis protoplasts and in whole plant (Petunia hybrida) with the same that obtained from CaMV35S and MUAS35SCP promoters individually. The MUASMSCP promoter showed 1.
View Article and Find Full Text PDFWe have developed a novel bi-directional promoter (FsFfCBD) by placing two heterogeneous core-promoters from the Figwort mosaic virus sub-genomic transcript promoter (FsCP, -69 to +31) and Cauliflower mosaic virus 35S promoter (CCP, -89 to +1) respectively on upstream (5') and downstream (3') ends of a tri-hybrid enhancer (FsEFfECE), in reverse orientation. The FsEFfECE domain encompasses three heterologous enhancer fragments from Figwort mosaic virus sub-genomic transcript promoter (FsE, 101 bp, -70 to -170), Figwort mosaic virus full-length transcript promoter (FfE, 196 bp, -249 to -54) and Cauliflower mosaic virus 35S promoter (CE, 254 bp, -343 to -90). The bi-directional nature of the FsFfCBD promoter (coupled to GFP and GUS) was established both in transient systems (onion epidermal cells and tobacco protoplasts) and transgenic plant (Nicotiana tabacum samsun NN) by monitoring the simultaneous expression of GFP and GUS employing fluorescence (for GFP) and biochemical (for GUS) based assays.
View Article and Find Full Text PDFIn Figwort mosaic virus sub-genomic transcript promoter (F-Sgt), function of the TGACG-regulatory motif, was investigated in the background of artificially designed promoter sequences. The 131bp (FS, -100 to +31) long F-Sgt promoter sequence containing one TGACG motif [FS-(TGACG)] was engineered to generate a set of three modified promoter constructs: [FS-(TGACG)(2), containing one additional TGACG motif at 7 nucleotides upstream of the original one], [FS-(TGACG)(3), containing two additional TGACG motifs at 7 nucleotides upstream and two nucleotides downstream of the original one] and [FS-(TGCTG)(mu), having a mutated TGACG motif]. EMSA and foot-printing analysis confirmed binding of tobacco nuclear factors with modified TGACG motif/s.
View Article and Find Full Text PDFBackground: Development of novel synthetic promoters with enhanced regulatory activity is of great value for a diverse range of plant biotechnology applications.
Methodology: Using the Figwort mosaic virus full-length transcript promoter (F) and the sub-genomic transcript promoter (FS) sequences, we generated two single shuffled promoter libraries (LssF and LssFS), two multiple shuffled promoter libraries (LmsFS-F and LmsF-FS), two hybrid promoters (FuasFScp and FSuasFcp) and two hybrid-shuffled promoter libraries (LhsFuasFScp and LhsFSuasFcp). Transient expression activities of approximately 50 shuffled promoter clones from each of these libraries were assayed in tobacco (Nicotiana tabacum cv.
Background: Designing functionally efficient recombinant promoters having reduced sequence homology and enhanced promoter activity will be an important step toward successful stacking or pyramiding of genes in a plant cell for developing transgenic plants expressing desired traits(s). Also basic knowledge regarding plant cell specific expression of a transgene under control of a promoter is crucial to assess the promoter's efficacy.
Methodology/principal Findings: We have constructed a set of 10 recombinant promoters incorporating different up-stream activation sequences (UAS) of Mirabilis mosaic virus sub-genomic transcript (MS8, -306 to +27) and TATA containing core domains of Figwort mosaic virus sub-genomic transcript promoter (FS3, -271 to +31).
Addition of multiple repeats of the FS3 upstream activation sequence (FS3-UAS, -270 to -60) intra-molecularly to the TATA containing core-domain of the FS3 (-151 to +31) promoter resulted in 2-3-folds enhanced promoter activity. The chimeric promoter, FS3-UAS-3X with maximum activity, showed 3.31 times stronger activity in root vascular tissue compared to FS3 promoter and could be used efficiently in translational research.
View Article and Find Full Text PDF