Publications by authors named "Sunish K Sugunan"

TiO nanoparticles surface-modified with silane moieties, which can be directly coated on a flexible substrate without the requirement of any binder materials and postsintering processes, are synthesized and characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, X-ray photoelectron spectroscopy, Raman spectroscopy, photoluminescence spectroscopy, time-correlated single-photon counting, and transmission electron microscopy. The viability of the prepared surface-modified TiO (M-TiO) sheets as a catalyst for the photo-induced degradation of a model dye, methylene blue, was checked using UV-visible absorption spectroscopy. The data suggest that, compared to unmodified TiO, M-TiO sheets facilitate better dye-degradation, which leads to a remarkable photocatalytic activity that results in more than 95% degradation of the dye in the first 10 min and more than 99% of the degradation in the first 50 min of the photocatalytic experiments.

View Article and Find Full Text PDF

Energy storage is a key aspect in the smooth functioning of the numerous gadgets that aid easy maneuvering through modern life. Supercapacitors that store energy faradaically have recently emerged as potential inventions for which mechanical flexibility is an absolute requirement for their future applications. Flexible supercapacitors based on nanocellulose extracted from easily available waste materials low cost methods have recently garnered great attention.

View Article and Find Full Text PDF

Singlet fission (SF) is proposed as a promising method to circumvent the Shockley-Queisser threshold of single junction photovoltaics. Progress towards realizing efficient SF-based devices has been impeded by the fact that only a handful of molecules and their derivatives practically exhibit efficient SF. In the present work, we demonstrate a TDDFT-based rapid and cost-effective computational approach for designing SF chromophores by doping various atomic sites (substituting carbon atoms) of polycyclic aromatic hydrocarbons with nitrogen, phosphorus, and silicon.

View Article and Find Full Text PDF

The advanced lifestyle of the human race involves heavy usage of various gadgets which require copious supplies of energy for uninterrupted functioning. Due to the ongoing depletion of fossil fuels and the accelerating demand for other energy resources, renewable energy sources, especially solar cells, are being extensively explored as viable alternatives. Flexible solar cells have recently emerged as an advanced member of the photovoltaic family; the flexibility and pliability of these photovoltaic materials are advantageous from a practical point of view.

View Article and Find Full Text PDF

As part of a continuing effort to find noncoherent photon upconversion (NCPU) systems with improved energy conversion efficiencies, the photophysics of the blue emitter, anthanthrene (An), and the fullerene absorber-sensitizer, C60, have been examined by both steady-state and pulsed laser techniques. An is a promising candidate for NCPU by homomolecular triplet-triplet annihilation (TTA) because its triplet state lies ∼800 cm(-1) below the triplet energy of the C60 donor (thereby improving efficiency by reducing back triplet energy transfer), and its fluorescent singlet state lies in near resonance with double its triplet energy (thus minimizing thermal energy losses in the annihilation process). In fluid solution, efficient triplet-triplet donor-acceptor energy transfer is observed, and rate constants for homomolecular TTA in the An acceptor are estimated to approach the diffusion limit.

View Article and Find Full Text PDF

The spectroscopy and dynamic behavior of the self-assembled, Soret-excited zinc tetraphenylporphyrin (ZnTPP) plus fullerene (C(60)) model system in solution has been examined using steady state fluorescence quenching, nanosecond time-correlated single photon counting, picosecond fluorescence upconversion, and picosecond transient absorption methods. Evidence of ground state complexation is presented. Steady-state quenching of the S(2) and S(1) fluorescence of ZnTPP by C(60) reveals that the quenching processes only occur in the excited complexes, are ultrafast, and proceed at different rates in the two states.

View Article and Find Full Text PDF

The mechanisms of noncoherent photon upconversion that involve triplet-triplet annihilation (TTA) in solution have been investigated for two model systems. ZnTPP (meso-tetraphenylporphine zinc) is used as the model visible light-absorbing metalloporphyrin because its S(1) fluorescence intensity can be used to monitor the initial rate of porphyrin triplet state production and because its S(2) fluorescence intensity can be used as a direct measure of the rate of porphyrin TTA. When perylene, which has a triplet energy lower than that of ZnTPP, is added as a signaling blue emitter (BE), the mechanism of photon upconversion involves triplet energy transfer from the porphyrin to the BE followed by TTA in the BE to form the fluorescent perylene S(1) state.

View Article and Find Full Text PDF