Systemic hypoxia is a common element in most perinatal emergencies and is a known driver of Bnip3 expression in the neonatal heart. Bnip3 plays a prominent role in the evolution of necrotic cell death, disrupting ER calcium homeostasis and initiating mitochondrial permeability transition (MPT). Emerging evidence suggests a cardioprotective role for the prostaglandin E1 analog misoprostol during periods of hypoxia, but the mechanisms for this protection are not completely understood.
View Article and Find Full Text PDFHeart disease with attendant cardiac fibrosis kills more patients in developed countries than any other disease, including cancer. We highlight the recent literature on factors that activate and also deactivate cardiac fibroblasts. Activation of cardiac fibroblasts results in myofibroblasts phenotype which incorporates aSMA to stress fibres, express ED-A fibronectin, elevated PDGFRα and are hypersecretory ECM components.
View Article and Find Full Text PDFMethods Mol Biol
August 2021
Two-dimensional cell culture is the primary method employed for proof-of-concept studies in most molecular biology labs. While immortalized cell lines are convenient and easy to maintain for extended periods in vitro, their inability to accurately represent genuine cell physiology-or pathophysiology-presents a challenge for drug discovery, as most results are not viable for the transition to clinical trial. The use of primary cells is a more biologically relevant approach to this issue; however, simulating in vitro what is observed in vivo is exigent at best.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFPrimary cardiac fibroblasts are notoriously difficult to maintain for extended periods of time in cell culture, due to the plasticity of their phenotype and sensitivity to mechanical input. In order to study cardiac fibroblast activation in vitro, we have developed cell culture conditions which promote the quiescent fibroblast phenotype in primary cells. Using elastic silicone substrata, both rat and mouse primary cardiac fibroblasts could be maintained in a quiescent state for more than 3 days after isolation and these cells showed low expression of myofibroblast markers, including fibronectin extracellular domain A, non-muscle myosin IIB, platelet-derived growth factor receptor-alpha and alpha-smooth muscle actin.
View Article and Find Full Text PDFCardiac muscle (the myocardium) is a unique arrangement of atria and ventricles that are spatially and electrically separated by a fibrous border. The spirally-arranged myocytes in both left and right ventricles are tethered by the component molecules of the cardiac extracellular matrix (ECM), including fibrillar collagen types I and III. Loss of normal arrangement of the ECM with either too little (as is observed in acute myocardial infarction) or too much (cardiac fibrosis in chronic post-myocardial infarction) is the primary contributor to cardiac dysfunction and heart failure.
View Article and Find Full Text PDFMany etiologies of heart disease are characterized by expansion and remodeling of the cardiac extracellular matrix (ECM or matrix) which results in cardiac fibrosis. Cardiac fibrosis is mediated in cardiac fibroblasts by TGF-β /R-Smad2/3 signaling. Matrix component proteins are synthesized by activated resident cardiac fibroblasts known as myofibroblasts (MFB).
View Article and Find Full Text PDFFollowing cardiac injury, fibroblasts are activated and are termed as myofibroblasts, and these cells are key players in extracellular matrix (ECM) remodeling and fibrosis, itself a primary contributor to heart failure. Nutraceuticals have been shown to blunt cardiac fibrosis in both in-vitro and in-vivo studies. However, nutraceuticals have had conflicting results in clinical trials, and there are no effective therapies currently available to specifically target cardiac fibrosis.
View Article and Find Full Text PDFMyocardin is a transcriptional co-activator required for cardiovascular development, but also promotes cardiomyocyte survival through an unclear molecular mechanism. Mitochondrial permeability transition is implicated in necrosis, while pore closure is required for mitochondrial maturation during cardiac development. We show that loss of myocardin function leads to subendocardial necrosis at E9.
View Article and Find Full Text PDFThe incidence of heart failure with concomitant cardiac fibrosis is very high in developed countries. Fibroblast activation in heart is causal to cardiac fibrosis as they convert to hypersynthetic cardiac myofibroblasts. There is no known treatment for cardiac fibrosis.
View Article and Find Full Text PDFInappropriate cardiac interstitial remodeling is mediated by activated phenoconverted myofibroblasts. The synthesis of matrix proteins by these cells is triggered by both chemical and mechanical stimuli. Ski is a repressor of TGFβ1/Smad signaling and has been described as possessing anti-fibrotic properties within the myocardium.
View Article and Find Full Text PDFTrans fats are not a homogeneous group of molecules and less is known about the cellular effects of individual members of the group. Vaccenic acid (VA) and elaidic acid (EA) are the predominant trans monoenes in ruminant fats and vegetable oil, respectively. Here, we investigated the mechanism of cell death induced by VA and EA on primary rat ventricular myofibroblasts (rVF).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2011
Chemotactic movement of myofibroblasts is recognized as a common means for their sequestration to the site of tissue injury. Following myocardial infarction (MI), recruitment of cardiac myofibroblasts to the infarct scar is a critical step in wound healing. Contractile myofibroblasts express embryonic smooth muscle myosin, α-smooth muscle actin, as well as collagens I and III.
View Article and Find Full Text PDFCardiac myofibroblasts are key players in chronic remodeling of the cardiac extracellular matrix, which is mediated in part by elevated transforming growth factor-β₁ (TGF-β₁). The c-Ski proto-oncoprotein has been shown to modify TGF-β₁ post-receptor signaling through receptor-activated Smads (R-Smads); however, little is known about how c-Ski regulates fibroblast phenotype and function. We sought to elucidate the function of c-Ski in primary cardiac myofibroblasts using a c-Ski overexpression system.
View Article and Find Full Text PDFA high-lipid diet (HLD) may lead to adverse left ventricular (LV) remodeling and endothelial dysfunction in conditions of hemodynamic stress. Although congenital absence of nitric oxide synthase 3 (NOS3) leads to adverse LV remodeling after transverse aortic constriction (TAC), the effects of a HLD in this state remains unknown. Wild-type (WT) and NOS3 knockout mice (NOS3(-/-)) were randomized into the following 4 groups: 1) WT + low-lipid diet (LLD) (10% of energy); 2) WT + HLD (60% of energy); 3) NOS3(-/-) + LLD; and 4) NOS3(-/-) + HLD for a total of 12 wk.
View Article and Find Full Text PDFIn fibrosing hearts, myofibroblasts are associated with cardiac extracellular matrix remodeling. Expression of key genes in the transition of cardiac fibroblast to myofibroblast phenotype in post-myocardial infarction heart and in vitro has not been well addressed. Contractile, focal adhesion-associated, receptor proteins, fibroblast growth factor-2 (FGF-2) expression, and motility were compared to assess phenotype in adult and neonatal rat cardiac fibroblasts and myofibroblasts.
View Article and Find Full Text PDFCardiac ventricular myofibroblast motility, proliferation, and contraction contribute to post-myocardial infarct wound healing, infarct scar formation, and remodeling of the ventricle remote to the site of infarction. The Na+-Ca2+ exchanger (NCX1) is involved in altered calcium handling in cardiac myocytes during cardiac remodeling associated with heart failure, however, its role in cardiac myofibroblast cell function is unexplored. In this study we investigated the involvement of NCX1 as well as the role of non-selective-cation channels (NSCC) in cardiac myofibroblast cell function in vitro.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
August 2007
Transforming growth factor-beta(1) (TGF-beta(1)) signal and downstream Smads play an important role in tissue fibrosis and matrix remodeling in various etiologies of heart failure. Inhibitory Smad7 (I-Smad7) is an inducible regulatory Smad protein that antagonizes TGF-beta(1) signal mediated via direct abrogation of R-Smad phosphorylation. The effect of ectopic I-Smad7 on net collagen production was investigated using hydroxyproline assay.
View Article and Find Full Text PDFMyofibroblasts respond to an array of signals from mitogens and cytokines during the course of wound healing following a myocardial infarction (MI), and these signals may coordinate ventricular myofibroblast proliferation. Furthermore, myofibroblasts are contractile and contribute to wound contraction by imparting mechanical tension on surrounding extracellular matrix. Although TGF-beta(1), CT-1, and PDGF-BB participate in various stages of post-MI wound healing, their combined net effect(s) on myofibroblast function is unknown.
View Article and Find Full Text PDF