Publications by authors named "Sunil Hingorani"

Introduction: Learning health networks (LHNs) improve clinical outcomes by applying core tenets of continuous quality improvements (QI) to reach community-defined outcomes, data-sharing, and empowered interdisciplinary teams including patients and caregivers. LHNs provide an ideal environment for the rapid adoption of evidence-based guidelines and translation of research and best practices at scale. When an LHN is established, it is critical to understand the needs of all stakeholders.

View Article and Find Full Text PDF

Purpose: To establish HMGA2 as a marker of basal-like disease in pancreatic ductal adenocarcinoma (PDAC) and explore its use as a biomarker for prognosis and treatment resistance.

Experimental Design: We identified high expression of HMGA2 in basal PDAC cells in a scRNAseq Atlas of 172 patient samples. We then analyzed HMGA2 expression, along with expression of the classical marker GATA6, in a cohort of 580 PDAC samples with multiplex immunohistochemistry.

View Article and Find Full Text PDF

Pre-clinical and clinical studies have shown that PEGPH20 depletes intratumoral hyaluronic acid (HA), which is linked to high interstitial fluid pressures and poor distribution of chemotherapies. 29 patients with metastatic advanced solid tumors received quantitative magnetic resonance imaging (qMRI) in 3 prospective clinical trials of PEGPH20: HALO-109-101 (NCT00834704), HALO-109-102 (NCT01170897), and HALO-109-201 (NCT01453153). Apparent Diffusion Coefficient of water (ADC), T1, k, v, v, and iAUC maps were computed from qMRI acquired at baseline and ≥ 1 time point post-PEGPH20.

View Article and Find Full Text PDF

Pre-clinical and clinical studies have shown that PEGPH20 depletes intratumoral hyaluronic acid (HA), which is linked to high interstitial fluid pressures and poor distribution of chemotherapies. 29 patients with metastatic advanced solid tumors received quantitative magnetic resonance imaging (qMRI) in 3 prospective clinical trials of PEGPH20, HALO-109-101 (NCT00834704), HALO-109-102 (NCT01170897), and HALO-109-201 (NCT01453153). Apparent Diffusion Coefficient of water (ADC), T1, , and iAUC maps were computed from qMRI acquired at baseline and ≥ 1 time point post-PEGPH20.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is classified into two key subtypes, classical and basal, with basal PDAC predicting worse survival. Using in vitro drug assays, genetic manipulation experiments, and in vivo drug studies in human patient-derived xenografts (PDXs) of PDAC, we found that basal PDACs were uniquely sensitive to transcriptional inhibition by targeting cyclin-dependent kinase 7 (CDK7) and CDK9, and this sensitivity was recapitulated in the basal subtype of breast cancer. We showed in cell lines, PDXs, and publicly available patient datasets that basal PDAC was characterized by inactivation of the integrated stress response (ISR), which leads to a higher rate of global mRNA translation.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinomas are distinguished by their robust desmoplasia, or fibroinflammatory response. Dominated by non-malignant cells, the mutated epithelium must therefore combat, cooperate with or co-opt the surrounding cells and signalling processes in its microenvironment. It is proposed that an invasive pancreatic ductal adenocarcinoma represents the coordinated evolution of malignant and non-malignant cells and mechanisms that subvert and repurpose normal tissue composition, architecture and physiology to foster tumorigenesis.

View Article and Find Full Text PDF

Background: Achieving robust responses with adoptive cell therapy for the treatment of the highly lethal pancreatic ductal adenocarcinoma (PDA) has been elusive. We previously showed that T cells engineered to express a mesothelin-specific T cell receptor (TCR) accumulate in autochthonous PDA, mediate therapeutic antitumor activity, but fail to eradicate tumors in part due to acquisition of a dysfunctional exhausted T cell state.

Methods: Here, we investigated the role of immune checkpoints in mediating TCR engineered T cell dysfunction in a genetically engineered PDA mouse model.

View Article and Find Full Text PDF

Cancer-associated fibroblast (CAF) heterogeneity is increasingly appreciated, but the origins and functions of distinct CAF subtypes remain poorly understood. The abundant and transcriptionally diverse CAF population in pancreatic ductal adenocarcinoma (PDAC) is thought to arise from a common cell of origin, pancreatic stellate cells (PSC), with diversification resulting from cytokine and growth factor gradients within the tumor microenvironment. Here we analyzed the differentiation and function of PSCs during tumor progression .

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is aggressive, highly metastatic and characterized by a robust desmoplasia. Connexin proteins that form gap junctions have been implicated in tumor suppression for over 30 years. Cx43, the most widely expressed connexin, regulates cell behaviors, including migration and proliferation.

View Article and Find Full Text PDF

Cellular plasticity contributes to intratumoral heterogeneity, metastatic spread, and treatment resistance of cancers. In this issue of Cancer Cell, Gabitova-Cornell et al. identify the potential to inadvertently develop an undifferentiated and more aggressive pancreas cancer with agents commonly prescribed to manage heart disease risk.

View Article and Find Full Text PDF

Purpose: To evaluate the efficacy and safety of pegvorhyaluronidase alfa (PEGPH20) plus nab-paclitaxel/gemcitabine (AG) in patients with hyaluronan-high metastatic pancreatic ductal adenocarcinoma (PDA).

Patients And Methods: HALO 109-301 was a phase III, randomized, double-blind, placebo-controlled study. Patients ≥ 18 years of age with untreated, metastatic, hyaluronan-high PDA were randomly assigned 2:1 to PEGPH20 plus AG or placebo plus AG.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment with diverse functions, including matrix deposition and remodelling, extensive reciprocal signalling interactions with cancer cells and crosstalk with infiltrating leukocytes. As such, they are a potential target for optimizing therapeutic strategies against cancer. However, many challenges are present in ongoing attempts to modulate CAFs for therapeutic benefit.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is characterized by a pronounced fibroinflammatory stromal reaction consisting of inordinate levels of hyaluronan (HA), collagen, immune cells, and activated fibroblasts that work in concert to generate a robust physical barrier to the perfusion and diffusion of small molecule therapeutics. The targeted depletion of hyaluronan with a PEGylated recombinant human hyaluronidase (PEGPH20) lowers interstitial gel-fluid pressures and re-expands collapsed intratumoral vasculature, improving the delivery of concurrently administered agents. Here we report a non-invasive means of assessing biophysical responses to stromal intervention with quantitative multiparametric magnetic resonance imaging (MRI) at 14 Tesla (T).

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy resistant to therapies, including immune-checkpoint blockade. We investigated two distinct strategies to modulate tumor-associated macrophages (TAM) to enhance cellular therapy targeting mesothelin in an autochthonous PDA mouse model. Administration of an antibody to colony-stimulating factor (anti-Csf1R) depleted Ly6C protumorigenic TAMs and significantly enhanced endogenous T-cell intratumoral accumulation.

View Article and Find Full Text PDF

Bright long-wavelength-excitable semiconducting polymer dots (LWE-Pdots) are highly desirable for in vivo imaging and multiplexed in vitro bioassays. LWE-Pdots have been obtained by incorporating a near-infrared (NIR) emitter into the backbone of a polymer host to develop a binary donor-acceptor (D-A) system. However, they usually suffer from severe concentration quenching and a trade-off between fluorescence quantum yield (Φ ) and absorption cross-section (σ).

View Article and Find Full Text PDF

Purpose: Pegylated recombinant human hyaluronidase (PEGPH20) degrades hyaluronan (HA) and, in combination with chemotherapy, prolongs survival in preclinical models. The activity of PEGPH20 with modified fluorouracil, leucovorin, irinotecan, and oxaliplatin (mFOLFIRINOX) was evaluated in patients with metastatic pancreatic cancer (mPC).

Materials And Methods: Patients had untreated mPC, a performance status of 0 to 1, and adequate organ function.

View Article and Find Full Text PDF

The desmoplastic reaction of pancreas cancer may begin as a wound healing response to the nascent neoplasm, but it soon creates an insidious shelter that can sustain the growing tumor and rebuff therapy. Among the many cell types subverted by transformed epithelial cells, fibroblasts are recruited and activated to lay a foundation of extracellular matrix proteins and glycosaminoglycans that alter tumor biophysics and signaling. Their near-universal presence in pancreas cancer and ostensible support of disease progression make fibroblasts attractive therapeutic targets.

View Article and Find Full Text PDF

Stromal complicity in epithelial carcinogenesis contributes to immune suppression and treatment resistance, but not all cancer-associated fibroblasts (CAFs) are bad actors. Identifying and targeting protumorigenic CAFs while preserving their antitumorigenic counterparts is the challenge. The risk is the possibility of making things worse; the reward is the potential to transform the care of and prognosis for patients with solid tumors.

View Article and Find Full Text PDF

Purpose Metastatic pancreatic ductal adenocarcinoma is characterized by excessive hyaluronan (HA) accumulation in the tumor microenvironment, elevating interstitial pressure and impairing perfusion. Preclinical studies demonstrated pegvorhyaluronidase alfa (PEGPH20) degrades HA, thereby increasing drug delivery. Patients and Methods Patients with previously untreated metastatic pancreatic ductal adenocarcinoma were randomly assigned to treatment with PEGPH20 plus nab-paclitaxel/gemcitabine (PAG) or nab-paclitaxel/gemcitabine (AG).

View Article and Find Full Text PDF

Recent advances in cytotoxic therapies for pancreatic ductal adenocarcinoma (PDA) are overshadowed by stalled clinical progress of more targeted strategies, the vast majority of which have failed in clinical trials. Inability to translate preclinical promise into clinical efficacy derives, in part, from imperfect disease modeling and mismatches between preclinical and clinical study design and execution. Into these gaps fall our patients who enter the clinical trial landscape expectantly and bear the brunt of its inadequacies.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDA) is a lethal malignancy resistant to most therapies, including immune checkpoint blockade. To elucidate mechanisms of immunotherapy resistance, we assessed immune parameters in resected human PDA. We demonstrate significant interpatient variability in T-cell number, localization, and phenotype.

View Article and Find Full Text PDF

Purpose: The lack of effective treatment options for pancreatic cancer has led to a 5-year survival rate of just 8%. Here, we evaluate the ability to enhance targeted drug delivery using mild hyperthermia in combination with the systemic administration of a low-temperature sensitive liposomal formulation of doxorubicin (LTSL-Dox) using a relevant model for pancreas cancer.

Materials And Methods: Experiments were performed in a genetically engineered mouse model of pancreatic cancer (KPC mice: LSL-Kras; LSL-Trp53; Pdx-1-Cre).

View Article and Find Full Text PDF

The tumor stroma is increasingly recognized as a key player in tumorigenesis through its effects on cell signaling, immune responses, and access of therapeutic agents. A major component of the extracellular matrix is hyaluronic acid (HA), which raises the interstitial gel fluid pressure within tumors and reduces drug delivery to malignant cells, and has been most extensively studied in pancreatic ductal adenocarcinoma (PDA). Pegylated recombinant human hyaluronidase (PEGPH20) is a novel agent that degrades HA and normalizes IFP to enhance the delivery of cytotoxic agents.

View Article and Find Full Text PDF

Developing probes for the detection of reactive oxygen species (ROS), a hallmark of many pathophysiological process, is imperative to both understanding the precise roles of ROS in many life-threatening diseases and optimizing therapeutic interventions. We herein report an all-in-one fluorescent semiconducting polymer based far-red to near-infrared (NIR) Pdot nanoprobe for the ratiometric detection of hypochlorous acid (HOCl). The fabrication takes the advantage of flexible polymer design by incorporating target-sensitive and target-inert fluorophores into a single conjugated polymer to avoid leakage or differential photobleaching problems existed in other nanoprobes.

View Article and Find Full Text PDF

The RUNX family transcription factors are critical regulators of development and frequently dysregulated in cancer. RUNX3, the least well characterized of the three family members, has been variously described as a tumor promoter or suppressor, sometimes with conflicting results and opinions in the same cancer and likely reflecting a complex role in oncogenesis. We recently identified RUNX3 expression as a crucial determinant of the predilection for pancreatic ductal adenocarcinoma (PDA) cells to proliferate locally or promulgate throughout the body.

View Article and Find Full Text PDF