Front Comput Neurosci
September 2014
The benefits of integrating attention and object recognition are investigated. While attention is frequently modeled as a pre-processor for recognition, we investigate the hypothesis that attention is an intrinsic component of recognition and vice-versa. This hypothesis is tested with a recognition model, the hierarchical discriminant saliency network (HDSN), whose layers are top-down saliency detectors, tuned for a visual class according to the principles of discriminant saliency.
View Article and Find Full Text PDFThe biological plausibility of statistical inference and learning, tuned to the statistics of natural images, is investigated. It is shown that a rich family of statistical decision rules, confidence measures, and risk estimates, can be implemented with the computations attributed to the standard neurophysiological model of V1. In particular, different statistical quantities can be computed through simple re-arrangement of lateral divisive connections, non-linearities, and pooling.
View Article and Find Full Text PDFIEEE Trans Pattern Anal Mach Intell
June 2009
A discriminant formulation of top-down visual saliency, intrinsically connected to the recognition problem, is proposed. The new formulation is shown to be closely related to a number of classical principles for the organization of perceptual systems, including infomax, inference by detection of suspicious coincidences, classification with minimal uncertainty, and classification with minimum probability of error. The implementation of these principles with computational parsimony, by exploitation of the statistics of natural images, is investigated.
View Article and Find Full Text PDF