Publications by authors named "Sunhoe Bang"

Cell growth is positively controlled by the phosphoinositide 3-kinase (PI3K)-target of rapamycin (TOR) signaling pathway under conditions of abundant growth factors and nutrients. To discover additional mechanisms that regulate cell growth, here we performed RNAi-based mosaic analyses in the fat body, the primary metabolic organ in the fly. Unexpectedly, the knockdown of the () gene markedly decreased cell size and body size.

View Article and Find Full Text PDF

Wnt signaling pathway plays critical roles in body axes patterning, cell fate specification, cell proliferation, cell migration, stem cell maintenance, cancer development and etc. Deregulation of this pathway can be causative of cancer, metabolic disease and neurodegenerative disease such as Parkinson`s disease. Among the core components of Wnt signaling pathway, we discovered that Dishevelled (Dsh) interacts with ULK1 and is phosphorylated by ULK1.

View Article and Find Full Text PDF

Mutations in the () gene cause human intellectual disability, one of the most common cognitive disorders. However, the molecular mechanisms of -related intellectual disability remain poorly understood. We investigated the role of in synaptic function and animal behavior using male mouse and models.

View Article and Find Full Text PDF

Mitochondrial calcium plays critical roles in diverse cellular processes ranging from energy metabolism to cell death. Previous studies have demonstrated that mitochondrial calcium uptake is mainly mediated by the mitochondrial calcium uniporter (MCU) complex. However, the roles of the MCU complex in calcium transport, signaling, and dysregulation by oxidative stress still remain unclear.

View Article and Find Full Text PDF

Background: Appropriate vertical movement is critical for the survival of flying animals. Although negative geotaxis (moving away from Earth) driven by gravity has been extensively studied, much less is understood concerning a static regulatory mechanism for inducing positive geotaxis (moving toward Earth).

Results: Using Drosophila melanogaster as a model organism, we showed that geomagnetic field (GMF) induces positive geotaxis and antagonizes negative gravitaxis.

View Article and Find Full Text PDF

Mutations in PINK1 (PTEN-induced putative kinase 1) are tightly linked to autosomal recessive Parkinson disease (PD). Although more than 50 mutations in PINK1 have been discovered, the role of these mutations in PD pathogenesis remains poorly understood. Here, we characterized 17 representative PINK1 pathogenic mutations in both mammalian cells and Drosophila.

View Article and Find Full Text PDF

The ability to respond to environmental temperature variation is essential for survival in animals. Flies show robust temperature-preference behaviour (TPB) to find optimal temperatures. Recently, we have shown that Drosophila mushroom body (MB) functions as a center controlling TPB.

View Article and Find Full Text PDF

Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature.

View Article and Find Full Text PDF

Hereditary spastic paraplegias (HSPs) are human genetic disorders causing increased stiffness and overactive muscle reflexes in the lower extremities. atlastin (atl) is one of the major genes in which mutations result in HSP. We generated a Drosophila model of HSP that has a null mutation in atl.

View Article and Find Full Text PDF

Temperature profoundly influences various life phenomena, and most animals have developed mechanisms to respond properly to environmental temperature fluctuations. To identify genes involved in sensing ambient temperature and in responding to its change, >27,000 independent P-element insertion mutants of Drosophila were screened. As a result, we found that defects in the genes encoding for proteins involved in histamine signaling [histidine decarboxylase (hdc), histamine-gated chloride channel subunit 1 (hisCl1), ora transientless (ort)] cause abnormal temperature preferences.

View Article and Find Full Text PDF

The pigment-dispersing factor (PDF) is a neuropeptide controlling circadian behavioral rhythms in Drosophila, but its receptor is not yet known. From a large-scale temperature preference behavior screen in Drosophila, we isolated a P insertion mutant that preferred different temperatures during the day and night. This mutation, which we named han, reduced the transcript level of CG13758.

View Article and Find Full Text PDF

Several transient receptor potential channels were recently found to be activated by temperature stimuli in vitro. Their physiological and behavioral roles are largely unknown. From a temperature-preference behavior screen of 27,000 Drosophila melanogaster P-insertion mutants, we isolated a gene, named pyrexia (pyx), encoding a new transient receptor potential channel.

View Article and Find Full Text PDF