Light-activated chemiresistors offer a powerful approach to achieving lower-temperature gas sensing with unprecedented sensitivities. However, an incomplete understanding of how photoexcited charge carriers enhance sensitivity obstructs the rational design of high-performance sensors, impeding the practical utilization under commonly accessible light sources instead of ultraviolet or higher-energy sources. Here, a rational approach is presented to modulate the electronic properties of the parent metal oxide phase, exemplified by this model system of Bi-doped InO nanofibers decorated with Au nanoparticles (NPs) that exhibit superior NO sensing performance.
View Article and Find Full Text PDF