Publications by authors named "Sungwhan Oh"

Lipopolysaccharides (LPS) and lipooligosaccharides (LOS) are located in the outer membrane of Gram-negative bacteria and are comprised of three distinctive parts: lipid A, core oligosaccharide (OS), and O-antigen. The structure of each region influences bacterial stability, toxicity, and pathogenesis. Here, we highlight the use of targeted activated-electron photodetachment (a-EPD) tandem mass spectrometry to characterize LPS and LOS from two crucial players in the human gut microbiota, Nissle and .

View Article and Find Full Text PDF

Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT). Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS).

View Article and Find Full Text PDF

The mammalian gut is the most densely colonized organ by microbial species, which are in constant contact with the host throughout life. Hosts have developed multifaceted cellular and molecular mechanisms to distinguish and respond to benign and pathogenic bacteria. In addition to relatively well-characterized innate and adaptive immune cells, a growing body of evidence shows additional important players in gut mucosal immunity.

View Article and Find Full Text PDF

The human gut microbiome constantly converts natural products derived from the host and diet into numerous bioactive metabolites. Dietary fats are essential micronutrients that undergo lipolysis to release free fatty acids (FAs) for absorption in the small intestine. Gut commensal bacteria modify some unsaturated FAs-for example, linoleic acid (LA)-into various intestinal FA isomers that regulate host metabolism and have anticarcinogenic properties.

View Article and Find Full Text PDF

Bioactive metabolites produced by symbiotic microbiota causally impact host health and disease, nonetheless, incomplete functional annotation of genes as well as complexities and dynamic nature of microbiota make understanding species-level contribution in production and actions difficult. Alpha-galactosylceramides produced by (BfaGC) are one of the first modulators of colonic immune development, but biosynthetic pathways and the significance of the single species in the symbiont community still remained elusive. To address these questions at the microbiota level, we have investigated the lipidomic profiles of prominent gut symbionts and the metagenome-level landscape of responsible gene signatures in the human gut.

View Article and Find Full Text PDF

Symbiotic microbiota critically contribute to host immune homeostasis in effector cell-specific manner. For exclusion of microbial component, germ-free animals have been the gold standard method. However, total removal of the entire gut microbiota of an animal from birth significantly skews physiological development.

View Article and Find Full Text PDF

Lipid phosphate phosphatases are a family of enzymes with diverse cellular metabolic functions. Phospholipid phosphatase 6 (PLPP6) is a regulator of cellular polyisoprenyl phosphates; however, its functions remain to be determined. Here, mouse PLPP6 was characterized to possess similar catalytic properties as the human enzyme.

View Article and Find Full Text PDF

Besides the prototypic innate and adaptive pathways, immune responses by innate-like lymphocytes have gained significant attention due to their unique roles. Among innate-like lymphocytes, unconventional T cells such as NKT cells and mucosal-associated invariant T (MAIT) cells recognize small nonpeptide molecules of specific chemical classes. Endogenous or microbial ligands are loaded to MHC class I-like molecule CD1d or MR1, and inducing immediate effector T cell and ligand structure is one of the key determinants of NKT/MAIT cell functions.

View Article and Find Full Text PDF

Small molecules derived from symbiotic microbiota critically contribute to intestinal immune maturation and regulation. However, little is known about the molecular mechanisms that control immune development in the host-microbiota environment. Here, using a targeted lipidomic analysis and synthetic approach, we carried out a multifaceted investigation of immunomodulatory α-galactosylceramides from the human symbiont Bacteroides fragilis (BfaGCs).

View Article and Find Full Text PDF

The orphan nuclear receptor Nurr1 is critical for the development, maintenance and protection of midbrain dopaminergic (mDA) neurons. Here we show that prostaglandin E1 (PGE1) and its dehydrated metabolite, PGA1, directly interact with the ligand-binding domain (LBD) of Nurr1 and stimulate its transcriptional function. We also report the crystallographic structure of Nurr1-LBD bound to PGA1 at 2.

View Article and Find Full Text PDF

Although maternal antibodies protect newborn babies from infection, little is known about how protective antibodies are induced without prior pathogen exposure. Here we show that neonatal mice that lack the capacity to produce IgG are protected from infection with the enteric pathogen enterotoxigenic Escherichia coli by maternal natural IgG antibodies against the maternal microbiota when antibodies are delivered either across the placenta or through breast milk. By challenging pups that were fostered by either maternal antibody-sufficient or antibody-deficient dams, we found that IgG derived from breast milk was crucial for protection against mucosal disease induced by enterotoxigenic E.

View Article and Find Full Text PDF

The metabolic pathways encoded by the human gut microbiome constantly interact with host gene products through numerous bioactive molecules. Primary bile acids (BAs) are synthesized within hepatocytes and released into the duodenum to facilitate absorption of lipids or fat-soluble vitamins. Some BAs (approximately 5%) escape into the colon, where gut commensal bacteria convert them into various intestinal BAs that are important hormones that regulate host cholesterol metabolism and energy balance via several nuclear receptors and/or G-protein-coupled receptors.

View Article and Find Full Text PDF

The mammalian immune system is tolerized to trillions of microbes residing on bodily surfaces and can discriminate between symbionts and pathogens despite their having related microbial structures. Mechanisms of innate immune activation and the subsequent signaling pathways used by symbionts to communicate with the adaptive immune system are poorly understood. Polysaccharide A (PSA) of is the model symbiotic immunomodulatory molecule.

View Article and Find Full Text PDF

Genome-wide association studies have identified risk loci associated with the development of inflammatory bowel disease, while epidemiological studies have emphasized that pathogenesis likely involves host interactions with environmental elements whose source and structure need to be defined. Here, we identify a class of compounds derived from dietary, microbial, and industrial sources that are characterized by the presence of a five-membered oxazole ring and induce CD1d-dependent intestinal inflammation. We observe that minimal oxazole structures modulate natural killer T cell-dependent inflammation by regulating lipid antigen presentation by CD1d on intestinal epithelial cells (IECs).

View Article and Find Full Text PDF
Article Synopsis
  • Research connects branched-chain amino acids (BCAAs) to insulin resistance, particularly in skeletal muscle due to excess lipid accumulation.
  • New findings identify 3-hydroxyisobutyrate (3-HIB), a product of BCAA metabolism, as a key regulator that enhances fatty acid transport through blood vessels and contributes to lipid build-up in muscle.
  • Elevated levels of 3-HIB in muscle cells from diabetic mice and humans suggest a direct link between BCAA metabolism and diabetes, highlighting the role of fat transport regulation in developing insulin resistance.
View Article and Find Full Text PDF

T regulatory cells that express the transcription factor Foxp3 (Foxp3(+) T(regs)) promote tissue homeostasis in several settings. We now report that symbiotic members of the human gut microbiota induce a distinct T(reg) population in the mouse colon, which constrains immuno-inflammatory responses. This induction—which we find to map to a broad, but specific, array of individual bacterial species—requires the transcription factor Rorγ, paradoxically, in that Rorγ is thought to antagonize FoxP3 and to promote T helper 17 (T(H)17) cell differentiation.

View Article and Find Full Text PDF

Coevolution of beneficial microorganisms with the mammalian intestine fundamentally shapes mammalian physiology. Here, we report that the intestinal microbe Bacteroides fragilis modifies the homeostasis of host invariant natural killer T (iNKT) cells by supplementing the host's endogenous lipid antigen milieu with unique inhibitory sphingolipids. The process occurs early in life and effectively impedes iNKT cell proliferation during neonatal development.

View Article and Find Full Text PDF

Asthma is a disease of airway inflammation that in most cases fails to resolve. The resolution of inflammation is an active process governed by specific chemical mediators, including D-series resolvins. In this study, we determined the impact of resolvin D1 (RvD1) and aspirin-triggered RvD1 (AT-RvD1) on the development of allergic airway responses and their resolution.

View Article and Find Full Text PDF

Underlying mechanisms for how bacterial infections contribute to active resolution of acute inflammation are unknown. Here, we performed exudate leukocyte trafficking and mediator-metabololipidomics of murine peritoneal Escherichia coli infections with temporal identification of pro-inflammatory (prostaglandins and leukotrienes) and specialized pro-resolving mediators (SPMs). In self-resolving E.

View Article and Find Full Text PDF

Acute inflammation and its resolution are essential processes for tissue protection and homeostasis. In this context, specialized proresolving mediators derived from polyunsaturated fatty acids are of interest. In this study, we report that resolvin E2 (RvE2) from eicosapentaenoic acid is endogenously produced during self-limited murine peritonitis in both the initiation and resolution phases.

View Article and Find Full Text PDF

Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A(4) hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B(4).

View Article and Find Full Text PDF

Lipid mediators derived from essential fatty acids, such as arachidonic acid, play important roles in physiologic and pathophysiologic processes. Prostaglandins, thromboxane, and leukotrienes are well-known eicosanoids that play critical roles in hemodynamics and inflammation. New families of mediators were recently uncovered that constitute a new genus stimulating resolution of acute inflammation, and are organ-protective.

View Article and Find Full Text PDF

Resolution of inflammation is an active temporally orchestrated process demonstrated by the biosynthesis of novel proresolving mediators. Dysregulation of resolution pathways may underlie prevalent human inflammatory diseases such as cardiovascular diseases and periodontitis. Localized Aggressive Periodontitis (LAP) is an early onset, rapidly progressing form of inflammatory periodontal disease.

View Article and Find Full Text PDF

Control of the inflammatory response is of wide interest given its important role in many diseases. In recent years we identified novel mechanisms and lipid mediators that play an active role in stimulating the resolution of self-limited acute inflammation. These novel pro-resolving mediators include the essential fatty acid-derived lipoxins, resolvins, protectins and maresins.

View Article and Find Full Text PDF