ScientificWorldJournal
March 2015
Due to the rapid development of flash memory, SSD is considered to be the replacement of HDD in the storage market. Although SSD retains several promising characteristics, such as high random I/O performance and nonvolatility, its high expense per capacity is the main obstacle in replacing HDD in all storage solutions. An alternative is to provide a hybrid structure where a small portion of SSD address space is combined with the much larger HDD address space.
View Article and Find Full Text PDFVAR2 is an integral thylakoid membrane protein and a member of the versatile FtsH class of metalloproteases in prokaryotes and eukaryotes. Recessive mutations in the VAR2 locus give rise to variegated plants (var2) that contain white sectors with abnormal plastids and green sectors with normal-appearing chloroplasts. In a continuing effort to isolate second-site suppressors of var2 variegation, we characterize in this report ems2505, a suppressor strain that has a virescent phenotype due to a missense mutation in At4g28590, the gene for a pioneer protein.
View Article and Find Full Text PDFThe concept of "photosynthetic biofuels" envisions application of a single organism, acting both as photo-catalyst and producer of ready-made fuel. This concept was applied upon genetic engineering of the cyanobacterium Synechocystis, conferring the ability to generate volatile isoprene hydrocarbons from CO(2) and H(2)O. Heterologous expression of the Pueraria montana (kudzu) isoprene synthase (IspS) gene in Synechocystis enabled photosynthetic isoprene generation in these cyanobacteria.
View Article and Find Full Text PDFThe function of the REP27 protein (GenBank accession no. EF127650) in the photosystem II (PSII) repair process was elucidated. REP27 is a nucleus-encoded and chloroplast-targeted protein containing two tetratricopeptide repeat (TPR) motifs, two putative transmembrane domains, and an extended carboxyl (C)-terminal region.
View Article and Find Full Text PDFThe Arabidopsis thaliana yellow variegated2 (var2) mutant is variegated due to lack of a chloroplast FtsH-like metalloprotease (FtsH2/VAR2). We have generated suppressors of var2 variegation to gain insight into factors and pathways that interact with VAR2 during chloroplast biogenesis. Here, we describe two such suppressors.
View Article and Find Full Text PDFThe goal of this research is elucidation of the molecular mechanism for the unique photosystem II (PSII) damage and repair cycle in chloroplasts. A frequently occurring, irreversible photooxidative damage inhibits the PSII charge separation reaction and stops photosynthesis. The chloroplast PSII repair process rectifies this adverse effect by selectively removing and replacing the photoinactivated D1/32-kD reaction center protein (the chloroplast-encoded psbA gene product) from the massive (>1,000 kD) water-oxidizing and O2-evolving PSII holocomplex.
View Article and Find Full Text PDFVariegated plants typically have green- and white-sectored leaves. Cells in the green sectors contain normal-appearing chloroplasts, whereas cells in the white sectors lack pigments and appear to be blocked at various stages of chloroplast biogenesis. Variegations can be caused by mutations in nuclear, chloroplast or mitochondrial genes.
View Article and Find Full Text PDFThe thylakoid membranes of most photosynthetic organisms contain a terminal oxidase (PTOX, the product of the Arabidopsis IMMUTANS gene) that functions in the oxidation of the plastoquinone pool. PTOX and AOX are diiron carboxylate proteins, and based on crystal structures of other members of this protein class, a structural model of PTOX has been proposed in which the ligation sphere of the diiron center is composed of six conserved histidine and glutamate residues. We tested the functional significance of these residues by site-directed mutagenesis of PTOX in vitro and in planta, taking advantage null immutans alleles for the latter studies.
View Article and Find Full Text PDFFtsH is an ATP-dependent metalloprotease found in bacteria, mitochondria, and plastids. Arabidopsis (Arabidopsis thaliana) contains 12 AtFtsH proteins, three in the mitochondrion and nine in the chloroplast. Four of the chloroplast FtsH proteins are encoded by paired members of closely related genes (AtFtsH1 and 5, and AtFtsH2 and 8).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2004
The Arabidopsis var2 variegation mutant defines a nuclear gene for a chloroplast FtsH metalloprotease. Leaf variegation is expressed only in homozygous recessive plants. The cells in the green leaf sectors of this mutant contain morphologically normal chloroplasts, whereas cells in the white sectors contain abnormal plastids lacking organized lamellar structures.
View Article and Find Full Text PDFThe Arabidopsis At filamentation temperature sensitive (FtsH) metalloprotease gene family comprises 12 members (AtFtsH1-AtFtsH12), including three pairs of closely related genes that are targeted to chloroplasts (AtFtsH2 and AtFtsH8; AtFtsH1 and AtFtsH5; and AtFtsH7 and AtFtsH9). Mutations in AtFtsH5 (var1) and AtFtsH2 (var2) give rise to variegated plants with green- and white-sectored leaves. Cells in the green sectors contain morphologically normal chloroplasts, whereas cells in the white sectors are blocked in chloroplast biogenesis.
View Article and Find Full Text PDFRetrograde plastid-to-nucleus signaling plays a central role in coordinating nuclear and plastid gene expression. The gun (genomes uncoupled) mutants of Arabidopsis have been used to demonstrate that Mg-protoporphyrin (Mg-Proto) acts as a plastid signal to repress the transcription of nuclear photosynthesis genes (1). It is unclear how Mg-Proto triggers repression, but several components of this pathway have been recently identified.
View Article and Find Full Text PDF