Publications by authors named "Sungsool Wi"

The interactions between glycosaminoglycans (GAGs) and proteins are essential in numerous biochemical processes that involve ion-pair interactions. However, there is no evidence of direct and specific interactions between GAGs and collagen proteins in native cartilage. The resolution of solid-state NMR (ssNMR) can offer such information but the detection of GAG interactions in cartilage is limited by the sensitivity of the experiments when C and N isotopes are at natural abundance.

View Article and Find Full Text PDF

A recently developed homonuclear dipolar recoupling scheme, Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO), was applied to record two-dimensional (2D) N-N correlations on uniformly N-labeled GB1 powders. A major feature exploited in these N-N correlations was AL FRESCO's remarkably low RF power demands, which enabled seconds-long mixing schemes when establishing direct correlations. These N-N mixing schemes proved efficient regardless of the magic-angle spinning (MAS) rate and, being nearly free from dipolar truncation effects, they enabled the detection of long-range, weak dipolar couplings, even in the presence of strong short-range dipolar couplings.

View Article and Find Full Text PDF

Overhauser dynamic nuclear polarization (ODNP) NMR of solutions at high fields is usually mediated by scalar couplings that polarize the nuclei of heavier, electron-rich atoms. This leaves H-detected NMR outside the realm of such studies. This study presents experiments that deliver H-detected NMR experiments on relatively large liquid volumes (60 ∼ 100 μL) and at high fields (14.

View Article and Find Full Text PDF

Protein aggregation is initiated by structural changes from native polypeptides to cytotoxic oligomers, which form cross-β structured amyloid. Identification and characterization of oligomeric intermediates are critically important for understanding not only the molecular mechanism of aggregation but also the cytotoxic nature of amyloid oligomers. Preparation of misfolded oligomers for structural characterization is, however, challenging because of their transient, heterogeneous nature.

View Article and Find Full Text PDF

Fungal infections cause high mortality in immunocompromised individuals, which has emerged as a significant threat to human health. The efforts devoted to the development of antifungal agents targeting the cell wall polysaccharides have been hindered by our incomplete picture of the assembly and remodeling of fungal cell walls. High-resolution solid-state nuclear magnetic resonance (ss NMR) studies have substantially revised our understanding of the polymorphic structure of polysaccharides and the nanoscale organization of cell walls in and multiple other fungi.

View Article and Find Full Text PDF

Homonuclear isotropic mixing modules allow J-coupled spins to exchange magnetization even when separated by chemical shift offsets that exceed their couplings. This is exploited in TOtal Correlation SpectroscopY (TOCSY) experiments and its variants, which facilitate these homonuclear polarization exchanges by applying broadband RF pulses. These then establish an effective Hamiltonian in which chemical shift offsets are erased, while J-coupling terms -including flip-flop components- remain active.

View Article and Find Full Text PDF

Here, we describe a method for obtaining a dynamic nuclear polarization (DNP)-enhanced double-quantum filtered (DQF) two-dimensional (2D) dipolar C-C correlation spectra of bone-tissue material at natural C abundance. DNP-enhanced DQF 2D dipolar C-C spectra were obtained using a few different mixing times of the dipolar-assisted rotational resonance (DARR) scheme and these spectra were compared to a conventional 2D through-space double-quantum (DQ)-single-quantum (SQ) correlation spectrum. While this scheme can only be used for an assignment purpose to reveal the carbon-carbon connectivity within a residue, the DQF C-C dipolar correlation scheme introduced here can be used to obtain longer distance carbon-carbon constraints.

View Article and Find Full Text PDF

Structural stability of various collagen-containing biomaterials such as bones and cartilage is still a mystery. Despite the spectroscopic development of several decades, the detailed mechanism of collagen interaction with citrate in bones and glycosaminoglycans (GAGs) in the cartilage extracellular matrix (ECM) in its native state is unobservable. We present a significant advancement to probe the collagen interactions with citrate and GAGs in the ECM of native bones and cartilage along with specific/non-specific interactions inside the collagen assembly at the nanoscopic level through natural-abundance dynamic nuclear polarization-based solid-state nuclear magnetic resonance spectroscopy.

View Article and Find Full Text PDF

Solid-state NMR (SSNMR) spectroscopy of integer-spin quadrupolar nuclei is important for the molecular-level characterization of a variety of materials and biological solids; of the integer spins, H (S = 1) is by far the most widely studied, due to its usefulness in probing dynamical motions. SSNMR spectra of integer-spin nuclei often feature very broad powder patterns that arise largely from the effects of the first-order quadrupolar interaction; as such, the acquisition of high-quality spectra continues to remain a challenge. The broadband adiabatic inversion cross-polarization (BRAIN-CP) pulse sequence, which is capable of cross-polarization (CP) enhancement over large bandwidths, has found success for the acquisition of SSNMR spectra of integer-spin nuclei, including N (S = 1), especially when coupled with Carr-Purcell/Meiboom-Gill pulse sequences featuring frequency-swept WURST pulses (WURST-CPMG) for T -based signal enhancement.

View Article and Find Full Text PDF

An efficient mixing scheme is introduced for establishing two-dimensional (2D) homonuclear correlations based on dipolar couplings. This mixing scheme achieves broadband dipolar recoupling using remarkably low powers even under ultrafast magic-angle spinning (MAS) rates. This Adiabatic Linearly FREquency Swept reCOupling (AL FRESCO) method applies a series of weak frequency-chirped pluses on the H channel, for performing efficient C- C magnetization transfers leading to cross peaks between sites separated over small or large chemical shift differences.

View Article and Find Full Text PDF

Dynamic Nuclear Polarization (DNP) can increase the sensitivity of Nuclear Magnetic Resonance (NMR), but it is challenging in the liquid state at high magnetic fields. In this study we demonstrate significant enhancements of NMR signals (up to 70 on 13C) in the liquid state by scalar Overhauser DNP at 14.1 T, with high resolution (∼0.

View Article and Find Full Text PDF

An increasing body of evidence suggests that aggregation-prone proteins associated with various neurodegenerative diseases synergistically promote their mutual aggregation, leading to the co-occurrence of multiple neurodegenerative diseases in the same patient. Here we investigated teh molecular basis of synergistic interactions between the two pathological proteins, tau and α-synuclein, using various biophysical techniques including transmission electron microscopy (TEM), circular dichroism (CD), and solution and solid-state NMR. Our biophysical analyses of α-synuclein aggregation in the absence and presence of tau reveal that tau monomers promote the formation of α-synuclein oligomers and subsequently fibril formation.

View Article and Find Full Text PDF

In the present study, the synthesis of an organic group-modified alumina by the sol-gel method is proposed. This material has shown to have an enhanced catalytic performance with grafted organic groups and showed an improved stability. The prepared material has shown to have several groups and an enhanced surface acidity.

View Article and Find Full Text PDF

Self-assembled metal nanoparticle-polymer nanocomposite particles as nanoreactors are a promising approach for performing liquid phase reactions using water as a bulk solvent. In this work, we demonstrate rapid, scalable self-assembly of metal nanoparticle catalyst-polymer nanocomposite particles via Flash NanoPrecipitation. The catalyst loading and size of the nanocomposite particles can be tuned independently.

View Article and Find Full Text PDF

Characterization of small oligomers formed at an early stage of amyloid formation is critical to understanding molecular mechanism of pathogenic aggregation process. Here we identified and characterized cytotoxic oligomeric intermediates populated during transthyretin (TTR) aggregation process. Under the amyloid-forming conditions, TTR initially forms a dimer through interactions between outer strands.

View Article and Find Full Text PDF

Cocaine is a highly abused drug that causes psychiatric and neurological problems. Its entry into neurons could alter cell-biochemistry and contribute in the manifestation of early pathological symptoms. We have previously shown the acute cocaine effects in rat C6 astroglia-like cells and found that these cells were highly sensitive to cocaine in terms of manifesting certain pathologies known to underlie psychological disorders.

View Article and Find Full Text PDF

We explore the use of cross-polarization magic-angle spinning (CPMAS) methods incorporating an adiabatic frequency sweep in a standard Hartman-Hahn CPMAS pulse scheme, to achieve signal enhancements in solid-state NMR spectra of rare spins under fast MAS spinning rates, including spin-1/2, integer spin, and half-integer spin nuclides. These experiments, dubbed Broadband Adiabatic INversion Cross-Polarization Magic-Angle Spinning (BRAIN-CPMAS) experiments, involve an adiabatic inversion pulse on the S-channel of a rare spin nuclide while simultaneously applying a conventional spin-locking pulse on the I-channel (H). The signal enhancement imparted by this CP scheme on the S-spin is broadbanded, while employing low RF field strengths on both I- and S-channels.

View Article and Find Full Text PDF

Nuclear magnetic resonance (NMR) is an intrinsically insensitive technique, with Boltzmann distributions of nuclear spin states on the order of parts per million in conventional magnetic fields. To overcome this limitation, dynamic nuclear polarization (DNP) can be used to gain up to three orders of magnitude in signal enhancement, which can decrease experimental time by up to six orders of magnitude. In DNP experiments, nuclear spin polarization is enhanced by transferring the relatively larger electron polarization to NMR active nuclei via microwave irradiation.

View Article and Find Full Text PDF

Cross-polarization (CP) experiments employing frequency-swept radiofrequency (rf) pulses have been successfully used in static spin systems for obtaining broadband signal enhancements. These experiments have been recently extended to heteronuclear I, S = spin-1/2 nuclides under magic-angle spinning (MAS), by applying adiabatic inversion pulses along the S (low-γ) channel while simultaneously applying a conventional spin-locking pulse on the I-channel (H). This study explores an extension of this adiabatic frequency sweep concept to quadrupolar nuclei, focusing on CP from H (I = 1/2) to H spins (S = 1) undergoing fast MAS (ν = 60 kHz).

View Article and Find Full Text PDF

The use of frequency-swept radiofrequency (rf) pulses for enhancing signals in the magic-angle spinning (MAS) spectra of half-integer quadrupolar nuclides was explored. The broadband adiabatic inversion cross-polarization magic-angle spinning (BRAIN-CPMAS) method, involving an adiabatic inversion pulse on the S-channel and a simultaneous rectangular spin-lock pulse on the I-channel (H), was applied to I(1/2)→S(3/2) systems. Optimal BRAIN-CPMAS matching conditions were found to involve low rf pulse strengths for both the I- and S-spin channels.

View Article and Find Full Text PDF

Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ((13)C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locking pulse on the I-channel ((1)H). Conditions are explored where the adiabatic frequency sweep width, Δν, is changed from selectively irradiating a single magic-angle-spinning (MAS) spinning centerband or sideband, to sweeping over multiple sidebands.

View Article and Find Full Text PDF

Water-soluble derivatives of gadolinium-containing metallofullerenes have been considered to be excellent candidates for new magnetic resonance imaging (MRI) contrast agents because of their high relaxivity and characteristic encapsulation of the lanthanide ions (Gd(3+)), preventing their release into the bioenvironment. The trimetallic nitride template endohedral metallofullerenes (TNT EMFs) have further advantages of high stability, high relative yield, and encapsulation of three Gd(3+) ions per molecule as illustrated by the previously reported nearly spherical, Gd3N@I(h)-C80. In this study, we report the preparation and functionalization of a lower-symmetry EMF, Gd3N@C(s)-C84, with a pentalene (fused pentagons) motif and an egg-shaped structure.

View Article and Find Full Text PDF

Solid-state NMR spectroscopy was utilized to study the crystallinity and its correlation to the motional dynamics of a series of biphenol based poly(arylene ether sulfone) (PAES) copolymer analogues obtained by incorporating flexible aliphatic blocks. Introduction of a series of conformationally flexible aliphatic blocks into the rigid aromatic PAES blocks in the copolymer sequence had increased the crystallinity of the polymer matrix because the copolymer system with aliphatic blocks provided a decrease in the glass transition temperature (Tg) while maintaining a nonvariant melting temperature (Tm). Modified PAES copolymer systems with aliphatic blocks had yielded shorter (1)H T1 relaxation times and longer (1)H T1ρ relaxation times relative to the neat aromatic PAES copolymer.

View Article and Find Full Text PDF

A solid-state rotational-echo double resonance (REDOR) NMR method was introduced to identify the ϕ- and ψ-torsion angle from a (1)H-(15)N or (1)H-(13)C' spin system of alanine-like residues in a selectively, uniformly, or extensively (15)N-/(13)C-labeled peptide. When a C(α)(i) or a (15)N peak is site-specifically obtainable in the NMR spectrum of a uniformly (15)N/(13)C-labeled sample system, the ψ- or ϕ-torsion angle specified by the conformational structure of peptide geometry involving (15)N(i)-(1)H(α)i-(15)N(i+1) or (13)C'(i-1)-(1)H(N)i-(13)C'(i) spin system can be identified based on (13)C(α)- or (15)N-detected (1)H(α)-(15)N or (1)H(N)-(13)C REDOR experiment. This method will conveniently be utilized to identify major secondary motifs, such as α-helix, β-sheet, and β-turn, from a uniformly (15)N-/(13)C-labled peptide sample system.

View Article and Find Full Text PDF

We have investigated the dynamics-transport correlations of a chlorine-resistant polymeric system designed as a next-generation reverse osmosis (RO) membrane material by solid-state NMR spectroscopy. A random disulfonated poly(arylene ether sulfone) copolymer in the potassium salt (-SO(3)(-)K(+)) form (BPS-20K) was blended with poly(ethylene glycol)s (PEGs) for improving water permeability. Blended BPS-20K/PEG membranes maintained the intrinsic chlorine-resistant property of BPS-20K, with a somewhat reduced salt rejection.

View Article and Find Full Text PDF