Chronic alcoholism is known to have detrimental effects on the brain, including cognitive impairment, neurotransmitter imbalances, and brain atrophy. The hippocampus, crucial for spatial memory and cognitive functions, is particularly susceptible to alcohol-induced changes. Photobiomodulation (PBM), a non-invasive therapeutic method that utilizes red or near-infrared light, has shown promising applications in the central and peripheral nervous systems.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) regulates diverse brain functions via TrkB receptor signaling. Due to the expression of TrkB receptors, astrocytes can internalize extracellular BDNF proteins via receptor-mediated endocytosis. Endocytosed BDNF can be re-secreted upon stimulation, but the molecular mechanism underlying this phenomenon remains unrecognized.
View Article and Find Full Text PDFAstrocytes act as neural stem cells (NSCs) that have the potential to self-renew and differentiate into other neuronal cells. The protein expression of these astrocytes depends on the stage of differentiation, showing sequential expression of multiple proteins such as octamer-binding transcription factor 4 (Oct4), nestin, glial fibrillary acidic protein (GFAP), and aldehyde dehydrogenase 1 family member L1 (aldh1L1). Photobiomodulation (PBM) affects cell apoptosis, proliferation, migration, and adhesion.
View Article and Find Full Text PDF