The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.
View Article and Find Full Text PDFTransparent heaters are gaining significant attention for applications such as antifog glass, smart windows, and smart farm greenhouses. A transparent heater basically consists of transparent conducting materials that serve as a heating area and contact pad electrode to apply power. To fabricate a transparent heater, materials with excellent light transmittance and low sheet resistance are required.
View Article and Find Full Text PDFBackground: Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing (WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are transitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics tools are needed to rapidly identify M.
View Article and Find Full Text PDFWe evaluated the performance of the BioFire FilmArray Pneumonia panel (PN-panel) in detecting bacterial pathogens by comparing it to cultures and to the usefulness of the leukocyte esterase (LE) urine strip test. Between January and June 2022, a total of 67 sputum specimens were obtained from community-acquired pneumonia patients. The PN-panel and LE test were performed simultaneously with conventional cultures.
View Article and Find Full Text PDFSnO has attracted significant attention as an electron transport layer (ETL) because of its wide optical bandgap, electron mobility, and transparency. However, the annealing temperature of 180 °C-200 °C, as reported by several studies, for the fabrication of SnO ETL limits its application for flexible devices. Herein, we demonstrated that the low-temperature deposition of SnO ETL and further surface modification with oxygen plasma enhances its efficiency from 2.
View Article and Find Full Text PDFVarious physical structures have improved light-harvesting and power-conversion efficiency in organic photovoltaic devices, and optical simulations have supported the improvement of device characteristics. Herein, we experimentally investigated how microlens arrays manipulate light propagation in microlens films and material stacks for organic photovoltaics to understand the influence of the constituent materials and sizes of the microlens. As materials to fabricate a microlens array, poly(dimethylsiloxane) and Norland Optical Adhesive 63 were adopted.
View Article and Find Full Text PDFCharge transport layers have been found to be crucial for high-performance perovskite solar cells (PSCs). SnO has been extensively investigated as an alternative material for the traditional TiO electron transport layer (ETL). The challenges facing the successful application of SnO ETLs are degradation during the high-temperature process and voltage loss due to the lower conduction band.
View Article and Find Full Text PDFMetal-based transparent top electrodes allow electronic devices to achieve transparency, thereby expanding their application range. Silver nanowire (AgNW)-based transparent electrodes can function as transparent top electrodes, owing to their excellent conductivity and transmittance. However, they require a high-temperature drying process, which damages the bottom functional layers.
View Article and Find Full Text PDFElectron beam (EB) curing is a foldable hard coating process and has attracted significant research attention in the field of flexible electronic devices. In this study, we report a method for enhancing material surface hardness with low-energy EB curing in a short time. The low-energy EB improved the coating hardness of films by inducing cross-linking polymerization of the silicon-containing monomer.
View Article and Find Full Text PDFMaterials (Basel)
September 2020
Wrinkles attract significant attention due to their ability to enhance the mechanical and optical characteristics of various optoelectronic devices. We report the effect of the plasma gas type, power, flow rate, and treatment time on the wrinkle features. When an optical adhesive was treated using a low-pressure plasma of oxygen, argon, and nitrogen, the oxygen and argon plasma generated wrinkles with the lowest and highest wavelengths, respectively.
View Article and Find Full Text PDFSilver nanomaterials (AgNMs) have been applied as antibacterial agents to combat bacterial infections that can cause disease and death. The antibacterial activity of AgNMs can be improved by increasing the specific surface area, so significant efforts have been devoted to developing various bottom-up synthesis methods to control the size and shape of the particles. Herein, we report on a facile heat-treatment method that can improve the antibacterial activity of transparent silver nanowire (AgNW) films in a size-controllable, top-down manner.
View Article and Find Full Text PDFInfectious diseases and the deaths caused due to contact with germ-contaminated surfaces are severe problems worldwide. Antibacterial materials based on silver nanowires (AgNWs) have a structural advantage when addressing this issue; this is because agglomeration is minimized when nanowires are fabricated into a film. Therefore, employing AgNWs for antimicrobial applications has garnered continuous interest, and increased research for further improvements has been observed.
View Article and Find Full Text PDFA major problem in the application of mesoporous TiO as an electron transport layer for flexible perovskite solar cells is that a high-temperature sintering process is required to remove organic additives from the TiO layer. A facile oxygen plasma process is herein demonstrated to fabricate mesoporous-structured perovskite solar cells with significant photovoltaic performance at low temperatures. When the low-temperature processed TiO layer is modified via oxygen plasma, the organic additives in the TiO layer that hinder the charge transport process are successfully decomposed.
View Article and Find Full Text PDFThe mesoporous TiO nanoparticle-based scaffold structure is the best electron transport layer (ETL) for perovskite solar cells (PSCs) and is still used in most PSCs with optimal photovoltaic characteristics. However, the high sintering temperature of TiO nanoparticles required to remove binders from the TiO paste limits PSC application to flexible electronics. In this study, a simple interface modification process involving ethanol rinsing is developed to enhance the photovoltaic characteristics of low-temperature processed PSCs.
View Article and Find Full Text PDFTo combat infectious diseases, zinc oxide (ZnO) has been identified as an effective antibacterial agent; however, its performance can be adversely affected by harsh application environments. The ozone impact on ZnO antibacterial film needs to be evaluated prior to its application in an ozone disinfection system. In this study, ZnO films synthesized via sol-gel/spin-coating were subjected to ultraviolet-ozone (UVO) treatment for different periods.
View Article and Find Full Text PDFDespite their excellent electrical and optical properties, Ag nanowires (NWs) suffer from oxidation when exposed to air for several days. In this study, we synthesized a Cs carbonate-incorporated overcoating layer by spin-coating and ultraviolet curing to prevent the thermal oxidation of Ag NWs. Cs incorporation increased the decomposition temperature of the overcoating layer, thus enhancing its thermal resistance.
View Article and Find Full Text PDFWe investigated the effect of different spray-coating parameters on the electro-optical properties of Ag nanowires (NWs). Highly transparent and conductive Ag NW⁻graphene oxide (GO) hybrid electrodes were fabricated by using the spray-coating technique. The Ag NW percolation network was modified with GO and this led to a reduced sheet resistance of the Ag NW⁻GO electrode as the result of a decrease in the inter-nanowire contact resistance.
View Article and Find Full Text PDFTo improve the electrical properties of silver nanowire (Ag NW) transparent conductive electrodes (TCEs), the density of Ag NW networks should be increased, to increase the number of percolation paths. However, because of the inverse relationship between optical transmittance and electrical resistivity, the optical properties of Ag NW TCEs deteriorate with increasing density of the Ag NW network. In this study, a hybrid Ag NW electrode composed of randomly oriented and grid-patterned Ag NW networks is demonstrated.
View Article and Find Full Text PDFIncreasing interests in stretchable electronic devices have resulted in vigorous research activities, most of which are focused on structural configurations. Diverse structural configurations are available for stretchability, including stiff-island, serpentine, and buckled structures. With easily deformable shapes and simple fabrication processes, buckled structures have the potential to realize stretchability.
View Article and Find Full Text PDFTransparent electrodes have been widely used in electronic devices such as solar cells, displays, and touch screens. Highly flexible transparent electrodes are especially desired for the development of next generation flexible electronic devices. Although indium tin oxide (ITO) is the most commonly used material for the fabrication of transparent electrodes, its brittleness and growing cost limit its utility for flexible electronic devices.
View Article and Find Full Text PDFObjectives: To evaluate the loss of heterozygosities (LOH) of chromosomes 3p14 (FHIT gene), 9p21 (p16), 13q21 (pRb), 6q22 (E-cadherin) and 17p13 (p53) in various thyroid tumors.
Methods: Eighty thyroid tumor cases (20 follicular adenomas, 10 follicular carcinomas, and 50 papillary carcinomas) have been analyzed for the presence of LOH in chromosomes 3p14, 9p21, 13q21, 6q22, and 17p13 allelic loss, using microsatellite markers and DNA obtained from formalin-fixed paraffin-embedded archival tissues.
Results: LOH on 3p14 was found in 10.
Objective: Microsatellite alterations, especially those that cause loss of heterozygosity (LOH), have recently been postulated as a novel mechanism of carcinogenesis and a useful prognostic factor in many kinds of malignant tumors. However, few studies have focused on a specific site, hypopharynx. The aim of this study was to evaluate the relationship between LOH and hypopharyngeal squamous cell carcinoma (HPSCC).
View Article and Find Full Text PDFA biosynthetic pathway for poly(3-hydroxybutyrate) [P(3HB)] was developed in Escherichia coli and Corynebacterium glutamicum by an acetoacetyl-coenzyme A (CoA) synthase (AACS) recently isolated from terpenoid-producing Streptomyces sp. strain CL190. Expression of AACS led to significant productions of P(3HB) in E.
View Article and Find Full Text PDFLipopolysaccharides free P[3-hydroxybutyrate (3HB)-co-3-hydroxyvalerate (3HV)] production was achieved using recombinant Corynebacterium glutamicum harboring polyhydroxyalkanoate (PHA) biosynthetic genes from Ralstonia eutropha. Cells grown on glucose with feeding of propionate as a precursor of 3HV unit accumulated 8-47wt% of P(3HB-co-3HV). The 3HV fraction in the copolymer was varied from 0 to 28mol% depending on the propionate concentrations.
View Article and Find Full Text PDFCompound semiconductors like gallium arsenide (GaAs) provide advantages over silicon for many applications, owing to their direct bandgaps and high electron mobilities. Examples range from efficient photovoltaic devices to radio-frequency electronics and most forms of optoelectronics. However, growing large, high quality wafers of these materials, and intimately integrating them on silicon or amorphous substrates (such as glass or plastic) is expensive, which restricts their use.
View Article and Find Full Text PDF