Retinal degeneration 3 (RD3) protein promotes accumulation of retinal membrane guanylyl cyclase (RetGC) in the photoreceptor outer segment and suppresses RetGC activation by guanylyl cyclase-activating proteins (GCAPs). Mutations truncating RD3 cause severe congenital blindness by preventing the inhibitory binding of RD3 to the cyclase. The high propensity of RD3 to aggregate in solution has prevented structural analysis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2018
Phytochrome photoreceptors control plant growth, development, and the shade avoidance response that limits crop yield in high-density agricultural plantings. Cyanobacteriochromes (CBCRs) are distantly related photosensory proteins that control cyanobacterial metabolism and behavior in response to light. Photoreceptors in both families reversibly photoconvert between two photostates via photoisomerization of linear tetrapyrrole (bilin) chromophores.
View Article and Find Full Text PDFRetinal guanylyl cyclases (RetGCs) in vertebrate photoreceptors are regulated by the guanylyl cyclase activator proteins (GCAP1 and GCAP2). Here, we report EPR double electron-electron resonance (DEER) studies on the most ubiquitous GCAP isoform, GCAP1 and site-directed mutagenesis analysis to determine an atomic resolution structural model of a GCAP1 dimer. Nitroxide spin-label probes were introduced at individual GCAP1 residues: T29C, E57C, E133C, and E154C.
View Article and Find Full Text PDFRetinal degeneration 3 protein (RD3) binds to retinal membrane guanylyl cyclase (RetGC) and suppresses the basal activity of RetGC in photoreceptor cells that opposes the allosteric activation of the cyclase by GCAP proteins. Mutations in RD3 that disrupt its inhibition of RetGC are implicated in human retinal degenerative disorders. Here we report both backbone and sidechain NMR assignments for the RD3 protein (BMRB accession no.
View Article and Find Full Text PDFSensory guanylate cyclases (zGCs) in zebrafish photoreceptors are regulated by a family of guanylate cyclase activator proteins (called GCAP1-7). GCAP5 contains two nonconserved cysteine residues (Cys15 and Cys17) that could in principle bind to biologically active transition state metal ions (Zn and Fe). Here, we present nuclear magnetic resonance (NMR) and isothermal titration calorimetry (ITC) binding analyses that demonstrate the binding of one Fe ion to two GCAP5 molecules (in a 1:2 complex) with a dissociation constant in the nanomolar range.
View Article and Find Full Text PDFVisinin-like protein 3 (VILIP-3) belongs to a family of Ca2+-myristoyl switch proteins that regulate signal transduction in the brain and retina. Here we analyze Ca2+ binding, characterize Ca2+-induced conformational changes, and determine the NMR structure of myristoylated VILIP-3. Three Ca2+ bind cooperatively to VILIP-3 at EF2, EF3 and EF4 (KD = 0.
View Article and Find Full Text PDFGCAP1, a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca(2+)-sensitive activation of retinal guanylyl cyclase 1 (RetGC1). We present NMR resonance assignments, residual dipolar coupling data, functional analysis, and a structural model of GCAP1 mutant (GCAP1(V77E)) in the Ca(2+)-free/Mg(2+)-bound state. NMR chemical shifts and residual dipolar coupling data reveal Ca(2+)-dependent differences for residues 170-174.
View Article and Find Full Text PDFCyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins with a tetrapyrrole (bilin) chromophore that belong to the phytochrome superfamily. Like phytochromes, CBCRs photoconvert between two photostates with distinct spectral properties. NpR6012g4 from Nostoc punctiforme is a model system for widespread CBCRs with conserved red/green photocycles.
View Article and Find Full Text PDFCyanobacteriochrome (CBCR) photosensory proteins are phytochrome homologs using bilin chromophores for light sensing across the visible spectrum. NpR6012g4 is a CBCR from Nostoc punctiforme that serves as a model for a widespread CBCR subfamily with red/green photocycles. We report NMR chemical shift assignments for both the protein backbone and side-chain resonances of the red-absorbing dark state of NpR6012g4 (BMRB no.
View Article and Find Full Text PDFCyanobacteriochromes (CBCRs) are cyanobacterial photosensory proteins distantly related to phytochromes. Like phytochromes, CBCRs reversibly photoconvert between a dark-stable state and a photoproduct via photoisomerization of the 15,16-double bond of their linear tetrapyrrole (bilin) chromophores. CBCRs provide cyanobacteria with complete coverage of the visible spectrum and near-ultraviolet region.
View Article and Find Full Text PDFCyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. Both CBCRs and phytochromes use photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties, the dark state and the photoproduct. The isolated CBCR domain NpR6012g4 from Nostoc punctiforme is a well-characterized member of the canonical red/green CBCR subfamily, photosensory domains that can function as sensors for light color or intensity to regulate phototactic responses of filamentous cyanobacteria.
View Article and Find Full Text PDFCyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. All CBCRs examined to date utilize a conserved Cys residue to form a covalent thioether linkage to the bilin chromophore. In the insert-Cys CBCR subfamily, a second conserved Cys can covalently link to the bilin C10 methine bridge, allowing detection of near-UV to blue light.
View Article and Find Full Text PDFNeuronal calcium sensor (NCS) proteins, a sub-branch of the calmodulin superfamily, are expressed in the brain and retina where they transduce calcium signals and are genetically linked to degenerative diseases. The amino acid sequences of NCS proteins are highly conserved but their physiological functions are quite different. Retinal recoverin controls Ca(2) (+)-dependent inactivation of light-excited rhodopsin during phototransduction, guanylyl cyclase activating proteins 1 and 2 (GCAP1 and GCAP2) promote Ca(2) (+)-dependent activation of retinal guanylyl cyclases, and neuronal frequenin (NCS-1) modulates synaptic activity and neuronal secretion.
View Article and Find Full Text PDFRetinal guanylyl cyclase (RetGC)-activating proteins (GCAPs) regulate visual photoresponse and trigger congenital retinal diseases in humans, but GCAP interaction with its target enzyme remains obscure. We mapped GCAP1 residues comprising the RetGC1 binding site by mutagenizing the entire surface of GCAP1 and testing the ability of each mutant to bind RetGC1 in a cell-based assay and to activate it in vitro. Mutations that most strongly affected the activation of RetGC1 localized to a distinct patch formed by the surface of non-metal-binding EF-hand 1, the loop and the exiting helix of EF-hand 2, and the entering helix of EF-hand 3.
View Article and Find Full Text PDFGuanylyl cyclase activating protein 1 (GCAP1), a member of the neuronal calcium sensor (NCS) subclass of the calmodulin superfamily, confers Ca(2+)-sensitive activation of retinal guanylyl cyclase 1 (RetGC1) upon light activation of photoreceptor cells. Here we present NMR assignments and functional analysis to probe Ca(2+)-dependent structural changes in GCAP1 that control activation of RetGC. NMR assignments were obtained for both the Ca(2+)-saturated inhibitory state of GCAP1 versus a GCAP1 mutant (D144N/D148G, called EF4mut), which lacks Ca(2+) binding in EF-hand 4 and models the Ca(2+)-free/Mg(2+)-bound activator state of GCAP1.
View Article and Find Full Text PDFCyanobacteriochrome (CBCR) photosensory proteins are phytochrome relatives using bilin chromophores for light sensing across the visible spectrum. Structural information is not available for two of the four known CBCR subfamilies. NpF2164g3 is a member of one such subfamily, exhibiting a violet/orange photocycle.
View Article and Find Full Text PDFGlycosyltransferases are important catalysts for enzymatic and chemoenzymatic synthesis of complex carbohydrates and glycoconjugates. The glycosylation efficiencies of wild-type glycosyltransferases vary considerably when different acceptor substrates are used. Using a multifunctional Pasteurella multocida sialyltransferase 1 (PmST1) as an example, we show here that the sugar nucleotide donor hydrolysis activity of glycosyltransferases contributes significantly to the low yield of glycosylation when a poor acceptor substrate is used.
View Article and Find Full Text PDFGuanylyl cyclase activating protein 1 (GCAP1), a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca(2+)-dependent activation of retinal guanylyl cyclase that regulates the visual light response. GCAP1 is genetically linked to retinal degenerative diseases. We report backbone NMR chemical shift assignments of Ca(2+)-saturated GCAP1 (BMRB no.
View Article and Find Full Text PDFGuanylyl cyclase-activating protein 1 (GCAP1), a myristoylated Ca(2+) sensor in vision, regulates retinal guanylyl cyclase (RetGC). We show that protein-myristoyl group interactions control Ca(2+) sensitivity, apparent affinity for RetGC, and maximal level of cyclase activation. Mutating residues near the myristoyl moiety affected the affinity of Ca(2+) binding to EF-hand 4.
View Article and Find Full Text PDFFront Mol Neurosci
January 2012
Neuronal calcium sensor (NCS) proteins, a sub-branch of the EF-hand superfamily, are expressed in the brain and retina where they transduce calcium signals and are genetically linked to degenerative diseases. The amino acid sequences of NCS proteins are highly conserved but their physiological functions are quite distinct. Retinal recoverin and guanylate cyclase activating proteins (GCAPs) both serve as calcium sensors in retinal rod cells, neuronal frequenin (NCS1) modulates synaptic activity and neuronal secretion, K(+) channel interacting proteins (KChIPs) regulate ion channels to control neuronal excitability, and DREAM (KChIP3) is a transcriptional repressor that regulates neuronal gene expression.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2012
Background: Neuronal calcium sensor (NCS) proteins, a sub-branch of the calmodulin superfamily, are expressed in the brain and retina where they transduce calcium signals and are genetically linked to degenerative diseases. The amino acid sequences of NCS proteins are highly conserved but their physiological functions are quite distinct. Retinal recoverin and guanylate cyclase activating proteins (GCAPs) both serve as calcium sensors in retinal rod cells, neuronal frequenin (NCS1) modulate synaptic activity and neuronal secretion, K+ channel interacting proteins (KChIPs) regulate ion channels to control neuronal excitability, and DREAM (KChIP3) is a transcriptional repressor that regulates neuronal gene expression.
View Article and Find Full Text PDFNeuronal calcium sensor (NCS) proteins transduce Ca2+ signals and are highly conserved from yeast to humans. We determined NMR structures of the NCS-1 homolog from fission yeast (Ncs1), which activates a phosphatidylinositol 4-kinase. Ncs1 contains an α-NH2-linked myristoyl group on a long N-terminal arm and four EF-hand motifs, three of which bind Ca2+, assembled into a compact structure.
View Article and Find Full Text PDFHeme-derived linear tetrapyrroles (phytobilins) in phycobiliproteins and phytochromes perform critical light-harvesting and light-sensing roles in oxygenic photosynthetic organisms. A key enzyme in their biogenesis, phycocyanobilin:ferredoxin oxidoreductase (PcyA), catalyzes the overall four-electron reduction of biliverdin IXalpha to phycocyanobilin--the common chromophore precursor for both classes of biliproteins. This interconversion occurs via semireduced bilin radical intermediates that are profoundly stabilized by selected mutations of two critical catalytic residues, Asp105 and His88.
View Article and Find Full Text PDFWe have succeeded to immobilize fluorescent proteins selectively using a micro-structured organosilane self-assembled monolayer as a template. An organosilane layer with amino terminal group was formed on a thermally oxidized Si wafer by liquid-phase method and then was pattern-etched by vacuum ultraviolet light (VUV). The second organosilane layer with thiol terminal group was deposited on the etched area by chemical vapor surface modification method (CVSM).
View Article and Find Full Text PDFBiomol NMR Assign
December 2009
The neuronal calcium sensor (NCS) proteins regulate signal transduction processes and are highly conserved from yeast to humans. We report complete NMR chemical shift assignments of the NCS homolog from fission yeast (Schizosaccharomyces pombe), referred to in this study as Ncs1p. (BMRB no.
View Article and Find Full Text PDF