Publications by authors named "Sunghoon Song"

Flexible materials and devices could be exploited in light-emitting diodes, electronic circuits, memory devices, sensors, displays, solar cells and bioelectronic devices. Nanoscale elements such as thin films, nanowires, nanotubes and nanoparticles can also be incorporated into the active films of mechanically flexible devices. Large-area devices containing extremely thin films of molecular materials represent the ultimate scaling of flexible devices based on organic materials, but the influence of bending and twisting on the electrical and mechanical stability of such devices has never been examined.

View Article and Find Full Text PDF

We fabricated an array-type organic nonvolatile memory device with multilayer graphene (MLG) film embedded in polyimide (PI) layers. The memory devices showed a high ON/OFF ratio (over 10(6)) and a long retention time (over 10(4) s). The switching of the Al/PI/MLG/PI/Al memory devices was due to the presence of the MLG film inserted into the PI layers.

View Article and Find Full Text PDF

Electronic devices based on a series of synthesized block copolymers are demonstrated. In particular, a block copolymer system with a lamellar structure exhibits unipolar switching behavior. This study provides a simple strategy based on the adjustment of the block ratio in block copolymers to control the polymer morphology and thus the electrical and switching properties of polymer-based memory devices.

View Article and Find Full Text PDF

We fabricated write-once-read-many times (WORM) type organic memory devices in 8 x 8 cross-bar structure. The active material for organic based WORM memory devices is mixture of both poly(4-vinyphenol) (PVP) and Vulcan XC-72s. From the electrical characteristics of the WORM memory devices, we observed two different resistance states, low resistance state and high resistance state, with six orders of ON/OFF ratio (I(ON)/I(OFF) - 10(6)).

View Article and Find Full Text PDF

We fabricated 8 × 8 cross-bar array-type flexible organic resistive memory devices with transparent multilayer graphene (MLG) electrodes on a poly(ethylene terephthalate) substrate. The active layer of the memory devices is a composite of polyimide and 6-phenyl-C61 butyric acid methyl ester. The sheet resistance of the MLG film on memory device was found to be ∼270 Ω/◻, and the transmittance of separated MLG film from memory device was ∼92%.

View Article and Find Full Text PDF

We demonstrated unipolar organic bistable memory devices with 8 x 8 cross-bar array type structure. The active material for the organic non-volatile memory devices is poly(styrene-co-styrenesulfonic acid Na) (PSSANa). From the electrical measurements of the PSSANa organic memory devices, we observed rewritable unipolar switching behaviors with a stable endurance and narrow cumulative probability.

View Article and Find Full Text PDF

We investigated Si doping effect on GaN nanowires and GaN films grown by metal-organic chemical vapor deposition (MOCVD). Si as n-type dopant is incorporated to GaN nanowires and GaN films controlled by SiH4 flow rate (0, 1, 5, 8, and 10 sccm). The charge concentration and mobility of GaN films increased and decreased, respectively, as increasing the SiH4 flow rate, whereas those for GaN nanowires were not influenced by the SiH4 flow rate.

View Article and Find Full Text PDF

Surface-architecture-controlled ZnO nanowires were grown using a vapor transport method on various ZnO buffer film coated c-plane sapphire substrates with or without Au catalysts. The ZnO nanowires that were grown showed two different types of geometric properties: corrugated ZnO nanowires having a relatively smaller diameter and a strong deep-level emission photoluminescence (PL) peak and smooth ZnO nanowires having a relatively larger diameter and a weak deep-level emission PL peak. The surface morphology and size-dependent tunable electronic transport properties of the ZnO nanowires were characterized using a nanowire field effect transistor (FET) device structure.

View Article and Find Full Text PDF