Publications by authors named "Sungho Nam"

Designing robust blue organic light-emitting diodes is a long-standing challenge in the display industry. The highly energetic states of blue emitters cause various degradation paths, leading to collective luminance drops in a competitive manner. However, a key mechanism of the operational degradation of organic light-emitting diodes has yet to be elucidated.

View Article and Find Full Text PDF

To utilize thermally activated delayed fluorescence (TADF) technology for future displays, it is necessary to develop host materials which harness the full potential of blue TADF emitters. However, no publication has reported such hosts yet. Although the most popular host for blue TADF, bis[2-(diphenylphosphino)phenyl]ether oxide (DPEPO) guarantees high-maximum external quantum efficiency (EQE ) TADF devices, they exhibit very short operational lifetimes.

View Article and Find Full Text PDF

Solution-processed organic field-effect transistors (OFETs) have attracted great interest due to their potential as logic devices for bendable and flexible electronics. In relation to n-channel structures, soluble fullerene semiconductors have been widely studied. However, they have not yet met the essential requirements for commercialization, primarily because of low charge carrier mobility, immature large-scale fabrication processes, and insufficient long-term operational stability.

View Article and Find Full Text PDF

Although the organic light-emitting diode (OLED) has been successfully commercialized, the development of deep-blue OLEDs with high efficiency and long lifetime remains a challenge. Here, a novel hyperfluorescent OLED that incorporates the Pt(II) complex (PtON7-dtb) as a phosphorescent sensitizer and a hydrocarbon-based and multiple resonance-based fluorophore as an emitter (TBPDP and ν-DABNA) in the device emissive layer (EML), is proposed. Such an EML system can promote efficient energy transfer from the triplet excited states of the sensitizer to the singlet excited states of the fluorophore, thus significantly improving the efficiency and lifetime of the device.

View Article and Find Full Text PDF

Organic solar cells based on solution processes have strong advantages over conventional silicon solar cells due to the possible low-cost manufacturing of flexible large-area solar modules at low temperatures. However, the benefit of the low temperature process is diminished by a thermal annealing step at high temperatures (≥200 °C), which cannot be practically applied for typical plastic film substrates with a glass transition temperature lower than 200 °C, for inorganic charge-collecting buffer layers such as zinc oxide (ZnO) in high efficiency inverted-type organic solar cells. Here we demonstrate that novel hybrid electron-collecting buffer layers with a particular nano-crater morphology, which are prepared by a low-temperature (150 °C) thermal annealing process of ZnO precursor films containing poly(2-ethyl-2-oxazoline) (PEOz), can deliver a high efficiency (12.

View Article and Find Full Text PDF

We report the development of low operating voltages in inorganic-organic hybrid light-emitting transistors (HLETs) based on a solution-processed ZrO gate dielectric and a hybrid multilayer channel consisting of the heterojunction InO/ZnO and the organic polymer "Super Yellow" acting as n- and p-channel/emissive layers, respectively. Resulting HLETs operate at the lowest voltages reported to-date (<10 V) and combine high electron mobility (22 cm/(V s)) with appreciable current on/off ratios (≈10) and an external quantum efficiency of 2 × 10% at 700 cd/m. The charge injection, transport, and recombination mechanisms within this HLET architecture are discussed, and prospects for further performance enhancement are considered.

View Article and Find Full Text PDF

Three triple bond-conjugated naphthalene diimide (NDI) copolymers, poly{[ N, N'-bis(2-R)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]- alt-[(2,5-bis(2-R)-1,4-phenylene)bis(ethyn-2,1-diyl)]} (PNDIR-R), were synthesized via Sonogashira coupling polymerization with varying alkyl side chains at the nitrogen atoms of the imide ring and 2,5-positions of the 1,4-diethynylbenzene moiety. Considering their identical polymer backbone structures, the side chains were found to have a strong influence on the surface morphology/nanostructure, thus playing a critical role in charge-transporting properties of the three NDI-based copolymers. Among the polymers, the one with an octyldodecyl (OD) chain at the nitrogen atoms of imide ring and a hexadecyloxy (HO) chain at the 2,5-positions of 1,4-diethynylbenzene, P(NDIOD-HO), exhibited the highest electron mobility of 0.

View Article and Find Full Text PDF

Here we demonstrate deep red light-sensing all-polymer phototransistors with bulk heterojunction layers of poly[4,8-bis[(2-ethylhexyl)-oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]-thiophenediyl] (PTB7) and poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)). The device performances were investigated by varying the incident light intensity of the deep red light (675 nm), while the signal amplification capability was examined by changing the gate and drain voltages. The result showed that the present all-polymer phototransistors exhibited higher photoresponsivity (∼14 A/W) and better on/off photoswitching characteristics than the devices with the pristine polymers under illumination with the deep red light.

View Article and Find Full Text PDF

This paper reports the controlled growth of atomically sharp In O /ZnO and In O /Li-doped ZnO (In O /Li-ZnO) heterojunctions via spin-coating at 200 °C and assesses their application in n-channel thin-film transistors (TFTs). It is shown that addition of Li in ZnO leads to n-type doping and allows for the accurate tuning of its Fermi energy. In the case of In O /ZnO heterojunctions, presence of the n-doped ZnO layer results in an increased amount of electrons being transferred from its conduction band minimum to that of In O over the interface, in a process similar to modulation doping.

View Article and Find Full Text PDF

We report the composition effect of polymeric sensing channel layers on the performance of all-polymer phototransistors featuring bulk heterojunction (BHJ) structure of electron-donating (p-type) and electron-accepting (n-type) polymers. As an n-type component, poly(3-hexylthiopehe-co-benzothiadiazole) end-capped with 4-hexylthiophene (THBT-4ht) was synthesized via two-step reactions. A well-studied conjugated polymer, poly(3-hexylthiophene) (P3HT), was employed as a p-type polymer.

View Article and Find Full Text PDF

Achievement of extremely high stability for inverted-type polymer:fullerene solar cells is reported, which have bulk heterojunction (BHJ) layers consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) and [6,6]-phenyl-C71-butyric acid methyl ester (PCBM), by employing UV-cut filter (UCF) that is mounted on the front of glass substrates. The UCF can block most of UV photons below 403 nm at the expense of ≈20% reduction in the total intensity of solar light. Results show that the PTB7-Th:PCBM solar cell with UCF exhibits extremely slow decay in power conversion efficiency (PCE) but a rapidly decayed PCE is measured for the device without UCF.

View Article and Find Full Text PDF

Organic thermoelectric devices (OTEDs) are recognized one of the next generation energy conversion platforms because of their huge potentials for securing electricity continuously from even tiny heat sources in our daily life. The advantage of OTEDs can be attributable to the design freedom in device shapes and the low-cost fabrication by employing solution coating processes at low temperatures. As one of the major OTE materials to date, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been used, but no study has been yet carried out on its acidity control even though the acidic components in OTEDs can seriously affect the device performance upon operation.

View Article and Find Full Text PDF

We report broadband pH-sensing organic field-effect transistors (OFETs) with the polymer-dispersed liquid crystal (PDLC) sensing layers. The PDLC layers are prepared by spin-coating using ethanol solutions containing 4-cyano-4'-pentyl-biphenyl (5CB) and a diblock copolymer (PAA-b-PCBOA) that consists of LC-philic block [poly(4-cyano-biphenyl-4-oxyundecyl acrylate) (PCBOA)] and acrylic acid block [poly(acrylic acid) (PAA)]. The spin-coated sensing layers feature of 5CB microdomains (<5 μm) encapsulated by the PAA-b-PCBOA polymer chains.

View Article and Find Full Text PDF

Polymer solar cells have been spotlighted due to their potential for low-cost manufacturing but their efficiency is still less than required for commercial application as lightweight/flexible modules. Forming a dipole layer at the electron-collecting interface has been suggested as one of the more attractive approaches for efficiency enhancement. However, only a few dipole layer material types have been reported so far, including only one non-ionic (charge neutral) polymer.

View Article and Find Full Text PDF

We report 'broadband light-sensing' all-polymer phototransistors with the nanostructured bulk heterojunction (BHJ) layers of visible (VIS) light-sensing electron-donating (p-type) polymer and near infrared (NIR) light-sensing electron-accepting (n-type) polymer. Poly[{2,5-bis-(2-ethylhexyl)-3,6-bis-(thien-2-yl)-pyrrolo[3,4-c]pyrrole-1,4-diyl}-co-{2,2'-(2,1,3-benzothiadiazole)]-5,5'-diyl}] (PEHTPPD-BT), which is synthesized via Suzuki coupling and employed as the n-type polymer, shows strong optical absorption in the NIR region (up to 1100 nm) in the presence of weak absorption in the VIS range (400~600 nm). To strengthen the VIS absorption, poly(3-hexylthiophene) (P3HT) is introduced as the p-type polymer.

View Article and Find Full Text PDF

The performance of solar cells with a polymer:polymer bulk heterojunction (BHJ) structure, consisting of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-alt-3-fluorothieno[3,4-b]thiophene-2-carboxylate] (PTB7-Th) donor and poly[[N,N'-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)] (P(NDI2OD-T2)) acceptor polymers, was investigated as a function of cosolvent (p-xylene:chlorobenzene (pXL:CB)) composition ratio. A remarkable efficiency improvement (∼38%) was achieved by spin-coating the photoactive blend layer from pXL:CB = 80:20 (volume) rather than pXL alone, but the efficiency then decreased when the CB content increased further to pXL:CB = 60:40. The improved efficiency was correlated with a particular PTB7-Th:P(NDI2OD-T2) donor-acceptor blend nanostructure, evidenced by a fiber-like surface morphology, a red-shifted optical absorption, and enhanced PL quenching.

View Article and Find Full Text PDF

We report planar liquid crystal-gated-organic field-effect transistors (LC-g-OFETs) with a simple in-plane drain-source-gate electrode structure, which can be cost-effectively prepared by typical photolithography/etching processes. The LC-g-OFET devices were fabricated by forming the LC layer (4-cyano-4'-pentylbiphenyl, 5CB) on top of the channel layer (poly(3-hexylthiophene), P3HT) that was spin-coated on the patterned indium-tin oxide (ITO)-coated glass substrates. The LC-g-OFET devices showed p-type transistor characteristics, while a current saturation behavior in the output curves was achieved for the 50-150 nm-thick P3HT (channel) layers.

View Article and Find Full Text PDF

Here, the improved performance of organic field effect transistors (OFET) by doping inorganic nanoparticles into a semiconducting polymer as a channel layer is briefly reported. Nickel(II) oxide nanoparticle (NiOnp) was used as an inorganic dopant while regioregular poly(3-hexylthiophene) (P3HT) was used as a matrix polymer for the channel layer in the OFETs. The doping ratio of NiOnp was made 1 wt.

View Article and Find Full Text PDF

We demonstrate liquid crystal-on-organic field-effect transistor (LC-on-OFET) sensory devices that can perceptively sense ultralow level gas flows. The LC-on-OFET devices were fabricated by mounting LC molecules (4-cyano-4'-pentylbiphenyl - 5CB) on the polymer channel layer of OFET. Results showed that the presence of LC molecules on the channel layer resulted in enhanced drain currents due to a strong dipole effect of LC molecules.

View Article and Find Full Text PDF

Hybrid phototransistors (HPTRs) were fabricated on glass substrates using organic/inorganic hybrid bulk heterojunction films of p-type poly(3-hexylthiophene) (P3HT) and n-type zinc oxide nanoparticles (ZnO(NP)). The content of ZnO(NP) was varied up to 50 wt % in order to understand the composition effect of ZnO(NP) on the performance of HPTRs. The morphology and nanostructure of the P3HT:ZnO(NP) films was examined by employing high resolution electron microscopes and synchrotron radiation grazing angle X-ray diffraction system.

View Article and Find Full Text PDF

We report the improved performance of all-polymer solar cells with bulk heterojunction nanolayers of an electron-donating polymer (poly(3-hexylthiophene) (P3HT)) and an electron-accepting polymer (poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT)), which were both doped with 4-ethylbenzenesulfonic acid (EBSA). To choose the doping ratio of P3HT for all-polymer solar cells, various EBSA doping ratios (0, 1, 3, 5, 10, 20 wt%) were tested by employing optical absorption spectroscopy, photoluminescence spectroscopy, photoelectron yield spectroscopy, and space-charge-limited current (SCLC) mobility measurement. The doping reaction of P3HT with EBSA was followed by observing the colour change in solutions.

View Article and Find Full Text PDF

We investigated the dispersion effect of crystalline silicon nanoparticles (SiNP) on the performance and stability of organic solar cells with the bulk heterojunction (BHJ) films of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PC(61)BM). To improve the dispersion of SiNP in the BHJ films, we attached octanoic acid (OA) to the SiNP surface via esterification reaction and characterized it with Raman spectroscopy and high-resolution transmission electron microscopy. The OA-attached SiNP (SiNP-OA) showed improved dispersion in chlorobenzene without change of optical absorption, ionization potential and crystal nanostructure of SiNP.

View Article and Find Full Text PDF

We investigated the influence of nickel oxide (NiO) nanoparticles that are incorporated into the hole-collecting buffer layer [poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)] on the performance of polymer:fullerene solar cells. To understand the optimum composition of NiO nanoparticles, the composition of NiO nanoparticles was varied from 0 wt% to 23 wt%. Results showed that the optical transmittance was gradually decreased as the NiO content increased.

View Article and Find Full Text PDF

Here we report the characteristics of protein-polymer nanobiocomposite films and their solid state devices. The protein-polymer nanobiocomposite films (thickness = approximately 125 nm) were prepared by spin-coating the solution of cytochrome c (cyt c) and poly(vinyl alcohol) (PVA) (cyt c:PVA = 3:1 by weight). To understand the characteristics of the cyt c-PVA films (nanolayers), we employed the optical absorption and surface morphology measurement and then fabricated planar diode-type solid state devices.

View Article and Find Full Text PDF

An artificial nose was developed to mimic aspects of sensory transduction of the peripheral mammalian olfactory system. We directly cultured and differentiated rat olfactory sensory neurons (OSNs) on indium-tin oxide electrodes of planar triode substrates without a coupling agent. Direct voltage (~50 μV) and current (~250 nA) signals were measured simultaneously when OSNs on the planar triode substrates were exposed to odorant mixtures.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondcai11vnp9mq948h5en3i8bq5janngk6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once