Microneedle patch devices have been widely utilized for transdermal drug delivery in pain management, but is challenged by accurate control of drug release and subsequent diffusion to human body. The recent emerging wearable electronics that could be integrated with microneedle devices offer a facile approach to address such a challenge. Here a 3D-printed microheater integrated drug-encapsulated microneedle patch system for drug delivery is presented.
View Article and Find Full Text PDFCD8 T cells provide a critical defence from pathogens at mucosal epithelia including the female reproductive tract (FRT). Mucosal immunisation is considered essential to initiate this response, however this is difficult to reconcile with evidence that antigen delivered to skin can recruit protective CD8 T cells to mucosal tissues. Here we dissect the underlying mechanism.
View Article and Find Full Text PDFThe generation of tissue resident memory (T) cells at the body surfaces to provide a front line defence against invading pathogens represents an important goal in vaccine development for a wide variety of pathogens. It has been widely assumed that local vaccine delivery to the mucosae is necessary to achieve that aim. Here we characterise a novel micro-needle array (MA) delivery system fabricated to deliver a live recombinant human adenovirus type 5 vaccine vector (AdHu5) encoding HIV-1 gag.
View Article and Find Full Text PDFA simple dissolvable microneedle array (MA) platform has emerged as a promising technology for vaccine delivery, due to needle-free injection with a formulation that preserves the immunogenicity of live viral vectored vaccines dried in the MA matrix. While recent studies have focused largely on design parameters optimized to induce primary CD8(+) T cell responses, the hallmark of a vaccine is synonymous with engendering long-lasting memory. Here, we address the capacity of dried MA vaccination to programme phenotypic markers indicative of effector/memory CD8(+) T cell subsets and also responsiveness to recall antigen benchmarked against conventional intradermal (ID) injection.
View Article and Find Full Text PDFMicroneedle patches are gaining increasing attention as an alternative approach for the delivery of vaccines. In this study, a licensed seasonal influenza vaccine from 2007 to 2008 was fabricated into dissolvable microneedles using TheraJect's microneedle technology (VaxMat). The tips of the microneedles were made of antigens mixed with trehalose and sodium carboxymethyl cellulose.
View Article and Find Full Text PDF