Publications by authors named "Sung-Yun Cho"

Background: Immunological contexture differs across malignancies, and understanding it in the tumor microenvironment (TME) is essential for development of new anticancer agents in order to achieve synergistic effects with anti-programmed cell death protein-1 (PD-1) therapy. TYRO3, AXL, and MERTK receptors are bi-expressed in both cancer and immune cells, and thus emerge as promising targets for therapeutic intervention. Whereas AXL and MERTK have been extensively studied, the role of TYRO3, in the TME, is still undetermined.

View Article and Find Full Text PDF

Extracellular vesicles (EV) in the tumor microenvironment have emerged as crucial mediators that promote proliferation, metastasis, and chemoresistance. However, the role of circulating small EVs (csEV) in cancer progression remains poorly understood. In this study, we report that csEV facilitate cancer progression and determine its molecular mechanism.

View Article and Find Full Text PDF

The receptor tyrosine kinase c-MET regulates processes essential for tissue remodeling and mammalian development. The dysregulation of c-MET signaling plays a role in tumorigenesis. The aberrant activation of c-MET, such as that caused by gene amplification or mutations, is associated with many cancers.

View Article and Find Full Text PDF

Immunomodulatory drugs (IMiDs) exert anti-myeloma activity by binding to the protein cereblon (CRBN) and subsequently degrading IKZF1/3. Recently, their ability to recruit E3 ubiquitin ligase has been used in the proteolysis targeting chimera (PROTAC) technology. Herein, we design and synthesize a novel IMiD analog TD-106 that induces the degradation of IKZF1/3 and inhibits the proliferation of multiple myeloma cells in vitro as well as in vivo.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most common forms of dementia and is characterized by neuroinflammation and amyloidogenesis. Here we investigated the effects of KRICT-9 on neuroinflammation and amyloidogenesis in and AD models. We found that KRICT-9 decreased lipopolysaccharide (LPS)-induced inflammation in microglial BV-2 cells and astrocytes while reducing nitric oxide generation and expression of inflammatory marker proteins (iNOS and COX-2) as well as APP, BACE1, C99, Iba-1, and GFAP.

View Article and Find Full Text PDF

Janus kinase 2 (JAK2) is a non-receptor tyrosine kinase that regulates the signal transducer and activator of transcription (STAT) signaling pathway. Deregulation of JAK2 signaling has previously been observed in hematologic malignancies, including erythroleukemia. In the present study, an aminopyridine derivative compound, KRC-180, exhibited direct inhibition of the JAK2 protein at the catalytic site, as demonstrated using kinase activity assays and docking analyses.

View Article and Find Full Text PDF

Introduction: Increased adrenergic tone might be an additional trigger of orthostatic stress of vasovagal syncope (VVS). Exercise before standing might provide increased sensitivity compared to standing using a sublingual nitroglycerines protocol during tilt table testing. The aim of this study was to evaluate the diagnostic value of treadmill testing before standing with nitroglycerin administration.

View Article and Find Full Text PDF

Background: Mucolipidosis types II and III (ML II/III) are autosomal recessive disorders caused by a deficiency in the lysosomal enzyme N-acetylglucosamine-1-phosphotransferase. We investigated the molecular genetic characteristics of the GNPTAB gene, which codes for the alpha/beta subunits of a phosphotransferase, in Korean ML II/III patients. We included prenatal tests and evaluated the spectrum of mutations in East Asian populations with ML II/III through a literature review.

View Article and Find Full Text PDF

The piperidine fragment in ceritinib was replaced with diverse aliphatic amines to improve inherent resistance issues of ceritinib. While most of the prepared compounds exhibit as similar in vitro activities as ceritinib, compound 10 shows encouraging activities against wild-type ALK as well as crizotinib-resistant mutants including extremely resistant G1202R mutant with an IC of 1.8 nM.

View Article and Find Full Text PDF

Background: c-Met signaling has been implicated in oncogenesis especially in cells with c-met gene amplification. Since 20 % of gastric cancer patients show high level of c-Met expression, c-Met has been identified as a good candidate for targeted therapy in gastric cancer. Herein, we report our newly synthesized c-Met inhibitor by showing its efficacy both in vitro and in vivo.

View Article and Find Full Text PDF

A series of pyridazin-3-one substituted with morpholino-pyrimidine derivatives was synthesized and evaluated as tyrosine kinase inhibitors against c-Met enzyme, and anti-proliferative activities of Hs746T human gastric cancer cell line. Most of compounds exhibited good biological activity, while compound 10, 12a, 14a displayed excellent c-Met enzyme inhibitory activities and Hs746T cell-based activities.

View Article and Find Full Text PDF

Exploration of the two-position side chain of pyrimidine in LDK378 with tetrahydroisoquinolines (THIQs) led to discovery of 8 and 17 as highly potent ALK inhibitors. THIQs 8 and 17 showed encouraging in vitro and in vivo xenograft efficacies, comparable with those of LDK378. Although THIQ analogs (8a-o and 17a-i) prepared were not as active as their parent compounds, both 8 and 17 have significant inhibitory activities against various ALK mutant enzymes including G1202R, indicating that this series of compounds could be further optimized as useful ALK inhibitors overcoming the resistance issues found from crizotinib and LDK378.

View Article and Find Full Text PDF

A series of novel 2,4-diaminopyrimidine compounds bearing bicyclic aminobenzazepine were synthesized and evaluated for their anti-ALK activities. The activities of these compounds were confirmed in both enzyme- and cell-based ALK assays. Amongst compounds synthesized, KRCA-0445 showed very promising results in pharmacokinetic study and in vivo efficacy study with H3122 xenograft mouse model.

View Article and Find Full Text PDF

Here, we show the newly synthesized and potent ALK inhibitor having similar scaffold to KRCA-0008, which was reported previously, and its molecular mechanism against cancer cells harboring EML4-ALK fusion protein. Through ALK wild type enzyme assay, we selected two compounds, KRCA-0080 and KRCA-0087, which have trifluoromethyl instead of chloride in R2 position. We characterized these newly synthesized compounds by in vitro and in vivo assays.

View Article and Find Full Text PDF

We report a series of phenyl substituted pyridazin-3-ones substituted with morpholino-pyrimidines. The SAR of the phenyl was explored and their c-Met kinase and cell-based inhibitory activity toward c-Met driven cell lines were evaluated. Described herein is a potent c-Met inhibitor by structural modification of the parent morpholino-pyridazinone scaffold, with particular focus on the phenyl and pyrimidine substituents.

View Article and Find Full Text PDF

This study evaluated the toxicity profiles of temozolomide in the treatment of malignant glioma as either concurrent or adjuvant chemotherapy. We retrospectively reviewed the medical records of 300 malignant glioma patients treated with temozolomide in two medical institutions in Korea between 2004 and 2010. Two hundred nine patients experienced a total of 618 toxicities during temozolomide therapy.

View Article and Find Full Text PDF

Among many signals to regulate hypoxia inducible factor 1α (HIF-1α), sphingosine kinase 1 (SPHK1) is also involved in various biological activities such as cell growth, survival, invasion, angiogenesis, and carcinogenesis. Thus, in the present study, molecular mechanisms of coumestrol were investigated on the SPHK1 and HIF-1α signaling pathway in hypoxic PC-3 prostate cancer cells. Coumestrol significantly suppressed SPHK1 activity and accumulation of HIF-1α in a time- and concentration-dependent manner in hypoxic PC-3 cells.

View Article and Find Full Text PDF

Recently some fms-like tyrosine kinase 3 (FLT3) inhibitors have shown good efficacy in acute myeloid leukemia (AML) patients. In an effort to develop anti-leukemic drugs, we investigated quinolinone derivatives as novel FLT3 inhibitors. Two substituted quinolinones, KR65367 and KR65370 were subjected to FLT3 kinase activity assay and showed potent inhibition against FLT3 kinase activity in vitro, with IC50 of 2.

View Article and Find Full Text PDF

G-protein-coupled receptor kinase (GRK)-2 and -5 are emerging therapeutic targets for the treatment of cardiovascular disease. In our efforts to discover novel small molecules to inhibit GRK-2 and -5, a class of compound based on 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine was identified as a novel hit by high throughput screening campaign. Structural modification of parent benzoxazole scaffolds by introducing substituents on phenyl displayed potent inhibitory activities toward GRK-2 and -5.

View Article and Find Full Text PDF

A new series of 2,4-dianilino-5-fluoropyrimidine derivatives were designed and synthesized and their anaplastic lymphoma kinase (ALK) inhibitory activities were evaluated by biochemical and cell-based assays in order to discover a new ALK inhibitor. Most compounds synthesized showed good inhibitory activities against ALK and good cytotoxic activities in H3122 cell line. The best compound 6f showed good activity against wild-type ALK along with crizotinib-resistant mutant ALK, and it showed 6 times better activity in cell-based assay than crizotinib.

View Article and Find Full Text PDF

The synthesis of bis-ortho-alkoxy-para-piperazinesubstituted-2,4-dianilinopyrimidines is described and their structure-activity-relationship to anaplastic lymphoma kinase (ALK) is presented. KRCA-0008 is selective and potent to ALK and Ack1, and displays drug-like properties without hERG liability. KRCA-0008 demonstrates in vivo efficacy comparable to Crizotinib in xenograft mice model.

View Article and Find Full Text PDF

SIRT1 and SIRT2 are deacetylase enzymes that belong to the sirtuin family and are involved in tumorigenesis. In our screen for small molecules inhibiting SIRT1/2 toxoflavin was identified. Toxoflavin potently inhibited SIRT1 activity in in vitro deacetylase assay using purified SIRT1 protein.

View Article and Find Full Text PDF

Background: Though Mica, a thin and sheet like mineral, has been used as a mineral medicine for treatment of bleeding, dysentery and inflammation in traditional medicine including Ayurveda, the biological evidences of Mica were not clearly elucidated so far. Thus, in the present study, the antitumor mechanism of particled Mica (STB-HO) was examined in colorectal cancers.

Methods: Athymic nude mice were inoculated with HCT116 colon cancer cells and orally administered STB-HO daily for 41 days, and HCT116 and human umbilical vein endothelial cells (HUVECs) were treated with STB-HO for 0 ~ 24 hours to perform immunoblotting, cytotoxicity assay, FACs analysis and measurement of matrix metalloproteinase 9 (MMP-9) secretion and other experiments.

View Article and Find Full Text PDF