Background: The increasing presence of plastics in the human diet is raising public concern about the potential risks posed by nanoplastic (NP) particles, which can emerge from the degradation of plastic debris. NP ingestion poses particular risks to individuals with inflammatory bowel disease (IBD), as compromised epithelial barriers may facilitate NP translocation.
Methods: In vitro, bone-marrow-derived macrophages (BMDMs) were exposed to 25 nm polymethacrylate (PMMA) or 50 nm polystyrene (PS) particles to assess morphological changes and alterations in pro- and anti-inflammatory gene expression.
Generating 3D bone cell networks in vitro that mimic the dynamic process during early bone formation remains challenging. Here, we report a synthetic biodegradable microporous hydrogel for efficient formation of 3D networks from human primary cells, analysis of cell-secreted extracellular matrix (ECM) and microfluidic integration. Using polymerization-induced phase separation, we demonstrate dynamic in situ formation of microporosity (5-20 µm) within matrix metalloproteinase-degradable polyethylene glycol hydrogels in the presence of living cells.
View Article and Find Full Text PDFFolic acid (FA)-induced acute kidney injury (FA-AKI) is an increasingly prevalent rodent disease model involving the injection of a high dose of FA that culminates in renal FA crystal deposition and injury. However, the literature characterizing the FA-AKI model is sparse and dated in part due to the absence of a well-described methodology for the visualization and quantification of renal FA crystals. Using widely available materials and tools, we developed a straightforward and crystal-preserving histological protocol that can be coupled with automated imaging for renal FA crystal visualization and generated an automated macro for downstream crystal content quantification.
View Article and Find Full Text PDFThe precise, quantitative evaluation of intracellular organelles in three-dimensional (3D) imaging data poses a significant challenge due to the inherent constraints of traditional microscopy techniques, the requirements of the use of exogenous labeling agents, and existing computational methods. To counter these challenges, we present a hybrid machine-learning framework exploiting correlative imaging of 3D quantitative phase imaging with 3D fluorescence imaging of labeled cells. The algorithm, which synergistically integrates a random-forest classifier with a deep neural network, is trained using the correlative imaging data set, and the trained network is then applied to 3D quantitative phase imaging of cell data.
View Article and Find Full Text PDFCellular decision making often builds on ultrasensitive MAPK pathways. The phosphorylation mechanism of MAP kinase has so far been described as either distributive or processive, with distributive mechanisms generating ultrasensitivity in theoretical analyses. However, the in vivo mechanism of MAP kinase phosphorylation and its activation dynamics remain unclear.
View Article and Find Full Text PDFAssessment of red blood cell (RBC) deformability as a biomarker requires expensive equipment to induce and monitor deformation. In this study, we present a simple method for quantifying RBC deformability. We designed a microfluidic channel consisting of a micropillar channel and a coflowing channel connected in series.
View Article and Find Full Text PDFWe propose a novel scheme of examining the host-guest-solvent interactions in solution from their gas phase structures. By adopting the permethylated β-cyclodextrin (perm β-CD)-protonated L-Lysine non-covalent complex as a prototypical system, we present the infrared multiple photon dissociation (IRMPD) spectrum of the gas phase complex produced by electrospray ionization technique. In order to elucidate the structure of perm β-CD)/LysH complex in the gas phase, we carry out quantum chemical calculations to assign the two strong peaks at 3,340 and 3,560 cm in the IRMPD spectrum, finding that the carboxyl forms loose hydrogen bonding with the perm β-CD, whereas the ammonium group of L-Lysine is away from the perm β-CD unit.
View Article and Find Full Text PDFPlastic pollution is a major global challenge of our times, baring a potential threat for the environment and the human health. The increasing abundance of nanoplastic (NP) and microplastic (MP) particles in the human diet might negatively affect human health since they - particularly in patients suffering from inflammatory bowel disease (IBD) - might surpass the intestinal barrier. To investigate whether ingested plastic particles cross the intestinal epithelium and promote bowel inflammation, mice were supplemented with NP or MP polystyrene (PS) particles for 24 or 12 weeks before inducing acute or chronic dextran sodium sulfate (DSS) colitis with continuous plastic administration.
View Article and Find Full Text PDFUnveiling the coke formation in zeolites is an essential prerequisite for tackling the deactivation of these catalysts in the transformations of hydrocarbons. Herein, we present the direct mapping of coke in the micropores of ZSM-5 catalysts used in methanol-to-hydrocarbons conversion by single-crystal electron diffraction analysis. The latter technique revealed a polycyclic aromatic structure along the straight channel, wherein the high-quality data permit refinement of its occupancy to about 40 %.
View Article and Find Full Text PDFThe conserved Mre11-Rad50 complex is crucial for the detection, signaling, end tethering and processing of DNA double-strand breaks. While it is known that Mre11-Rad50 foci formation at DNA lesions accompanies repair, the underlying molecular assembly mechanisms and functional implications remained unclear. Combining pathway reconstitution in electron microscopy, biochemical assays and genetic studies, we show that S.
View Article and Find Full Text PDFThe nuclear pore complex (NPC) mediates nearly all exchanges between nucleus and cytoplasm, and in many species, it changes composition as the organism ages. However, how these changes arise and whether they contribute themselves to ageing is poorly understood. We show that SAGA-dependent attachment of DNA circles to NPCs in replicatively ageing yeast cells causes NPCs to lose their nuclear basket and cytoplasmic complexes.
View Article and Find Full Text PDFWhen Fermi surfaces (FSs) are subject to long-range interactions that are marginal in the renormalization-group sense, Landau Fermi liquids are destroyed, but only barely. With the interaction further screened by particle-hole excitations through one-loop quantum corrections, it has been believed that these marginal Fermi liquids (MFLs) are described by weakly coupled field theories at low energies. In this Letter, we point out a possibility in which higher-loop processes qualitatively change the picture through UV-IR mixing, in which the size of the FS enters as a relevant scale.
View Article and Find Full Text PDFWe present the intra- and inter-molecular organocatalysis of S2 fluorination using CsF by crown ether to estimate the efficacy of the promoter and to elucidate the reaction mechanism. The yields of intramolecular S2 fluorination of the veratrole substrates are measured to be very small (<1% in 12 h) in the absence of crown ether promoters, whereas the S2 fluorination of the substrate possessing a crown ether unit proceeds to near completion (~99%) in 12 h. We also studied the efficacy of intermolecular rate acceleration by an independent promoter 18-crown-6 for comparison.
View Article and Find Full Text PDFThe synthesis of fluorine-18 labeled fluoroform with high molar activity has grown in importance for the development of fluorine-18 labeled aryl-CF radiopharmaceuticals that are useful as diagnostic radiotracers for the powerful technique of positron emission tomography (PET). We designed a strategy of synthesizing fluorine-18 labeled fluoroform from 1-difluoromethyl-3-methyltriazolium triflate (1) S2 fluorination without stable fluorine isotope scrambling. Fluoroform was generated at rt in 10 min by fluorination of the triazolium precursor with TBAF (6 equiv.
View Article and Find Full Text PDFMixing in microscale flows, where turbulence is inherently difficult to generate, has been a challenging issue owing to its laminar flow characteristics. Either the diffusion-based mixing process, or the convective mixing based on the cross-stream secondary flow, has been exploited as a passive mixing scheme that does not require any external force field. However, these techniques suffer from insufficient mixing or complicated channel design step.
View Article and Find Full Text PDFSaliva and blood plasma are non-Newtonian viscoelastic fluids that play essential roles in the transport of particulate matters (e.g., food and blood cells).
View Article and Find Full Text PDFCyclodextrins (CDs) have drawn a lot of attention from the scientific communities as a model system for host-guest chemistry and also due to its variety of applications in the pharmaceutical, cosmetic, food, textile, separation science, and essential oil industries. The formation of the inclusion complexes enables these applications in the condensed phases, which have been confirmed by nuclear magnetic resonance (NMR) spectroscopy, X-ray crystallography, and other methodologies. The advent of soft ionization techniques that can transfer the solution-phase noncovalent complexes to the gas phase has allowed for extensive examination of these complexes and provides valuable insight into the principles governing the formation of gaseous noncovalent complexes.
View Article and Find Full Text PDFMechanistic understanding of biochemical reactions requires structural and kinetic characterization of the underlying chemical processes. However, no single experimental technique can provide this information in a broadly applicable manner and thus structural studies of static macromolecules are often complemented by biophysical analysis. Moreover, the common strategy of utilizing mutants or crosslinking probes to stabilize intermediates is prone to trapping off-pathway artefacts and precludes determining the order of molecular events.
View Article and Find Full Text PDFEukaryotic cells developed complex mitogen-activated protein kinase (MAPK) signaling networks to sense their intra- and extracellular environment and respond to various stress conditions. For example, S. cerevisiae uses five distinct MAP kinase pathways to orchestrate meiosis or respond to mating pheromones, osmolarity changes and cell wall stress.
View Article and Find Full Text PDFBudding yeast, , has been widely used as a model system to study cellular signaling in response to internal and external cues. Yeast was among the first organisms in which the architecture, feedback mechanisms and physiological responses of various MAP kinase signaling cascades were studied in detail. Although these MAP kinase pathways are activated by different signals and elicit diverse cellular responses, such as adaptation to stress and mating, they function as an interconnected signaling network, as they influence each other and, in some cases, even share components.
View Article and Find Full Text PDFPoly(dimethylsiloxane) (PDMS) is widely used as a microfluidics platform material; however, it absorbs various molecules, perturbing specific chemical concentrations in microfluidic channels. We present a simple solution to prevent adsorption into a PDMS microfluidic device. We used a vapor-phase-deposited nanoadhesive layer to seal PDMS microfluidic channels.
View Article and Find Full Text PDFWe propose a new principle to realize flatbands which are robust in real materials, based on a network superstructure of one-dimensional segments. This mechanism is naturally realized in the nearly commensurate charge-density wave of 1T-TaS_{2} with the honeycomb network of conducting domain walls, and the resulting flatband can naturally explain the enhanced superconductivity. We also show that corner states, which are a hallmark of the higher-order topological insulators, appear in the network superstructure.
View Article and Find Full Text PDFMicromachines (Basel)
April 2020
Microfluidics has proven to be a useful platform to understand the material properties and technical applications of soft matter, including emulsions, polymer solutions, hydrogels, and cellulose papers [...
View Article and Find Full Text PDFMicromachines (Basel)
August 2019
Mechanobiology studies from the last decades have brought significant insights into many domains of biological research, from development to cellular signaling. However, mechano-regulation of subcellular components, especially membranous organelles, are only beginning to be unraveled. In this paper, we take mitochondrial mechanobiology as an example to discuss recent advances and current technical challenges in this field.
View Article and Find Full Text PDF