Background And Objectives: Menkes disease (MNK) is a rare X-linked recessive disease, caused by mutations in the copper transporting ATP7A gene that is required for copper homeostasis. MNK patients experience various clinical symptoms including neurological defects that are closely related to the prognosis of MNK patients. Neural stem cells (NSCs) in the hippocampal dentate gyrus (DG) produce new neurons throughout life, and defects in DG neurogenesis are often correlated with cognitive and behavioral problems.
View Article and Find Full Text PDFBiochem Biophys Res Commun
November 2015
Reelin, a large secreted extracellular matrix glycoprotein, plays a key role in neuronal migration during cortical development and promotes neuronal maturation. The signaling pathway regulating neuronal maturation in the postnatal period are relatively less well understood. In this study, we demonstrated that a heterotrimeric G protein, Go, is a novel target of Reelin-induced signaling to promote neurite outgrowth.
View Article and Find Full Text PDFReelin, an extracellular glycoprotein has an important role in the proper migration and positioning of neurons during brain development. Lack of reelin causes not only disorganized lamination of the cerebral and cerebellar cortex but also malpositioning of mesencephalic dopaminergic (mDA) neurons. However, the accurate role of reelin in the migration and positioning of mDA neurons is not fully elucidated.
View Article and Find Full Text PDFDisabled 1 (Dab1), a cytoplasmic adaptor protein expressed predominantly in the CNS, transduces a Reelin-initiated signaling that controls neuronal migration and positioning during brain development. To determine the role of Dab1 in neural stem cell (NSC) differentiation, we established a culture of neurospheres derived from the embryonic forebrain of the Dab1(-/-) mice, yotari. Differentiating Dab1(-/-) neurospheres exhibited a higher expression of GFAP, an astrocytic marker, at the expense of neuronal markers.
View Article and Find Full Text PDF