Publications by authors named "Sung-Kook Chun"

Diet is a robust entrainment cue that regulates diurnal rhythms of the gut microbiome. We and others have shown that disruption of the circadian clock drives the progression of colorectal cancer (CRC). While certain bacterial species have been suggested to play driver roles in CRC, it is unknown whether the intestinal clock impinges on the microbiome to accelerate CRC pathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • - The circadian clock plays a crucial role in regulating the immune system and is important for both disease defense and cancer detection.
  • - Research using single-cell RNA sequencing reveals that certain immune cells, particularly PD-L1-expressing myeloid-derived suppressor cells (MDSCs), oscillate in numbers based on the time of day and suppress the activity of CD8 T cells.
  • - Timing the administration of anti-PD-L1 treatment to coincide with the peak levels of MDSCs enhances its effectiveness, highlighting the importance of circadian rhythms in cancer immunotherapy.
View Article and Find Full Text PDF

Aims: Dysregulation of adrenocortical steroid (corticosteroids) biosynthesis leads to pathological conditions such as Cushing's syndrome. Although several classes of steroid biosynthesis inhibitors have been developed to treat cortisol overproduction, limitations such as insufficient efficacy, adverse effects, and/or tolerability still remain. The present study aimed to develop a new class of small molecules that inhibit cortisol production, and investigated their putative modes of action.

View Article and Find Full Text PDF

The environmental light/dark cycle has left its mark on the body's physiological functions to condition not only our inner biology, but also the interaction with external cues. In this scenario, the circadian regulation of the immune response has emerged as a critical factor in defining the host-pathogen interaction and the identification of the underlying circuitry represents a prerequisite for the development of circadian-based therapeutic strategies. The possibility to track down the circadian regulation of the immune response to a metabolic pathway would represent a unique opportunity in this direction.

View Article and Find Full Text PDF

Metabolic rewiring is a hallmark feature prevalent in cancer cells as well as insulin resistance (IR) associated with diet-induced obesity (DIO). For instance, tumor metabolism shifts towards an enhanced glycolytic state even under aerobic conditions. In contrast, DIO triggers lipid-induced IR by impairing insulin signaling and reducing insulin-stimulated glucose uptake.

View Article and Find Full Text PDF

An alarming rise in young onset colorectal cancer (CRC) has been reported; however, the underlying molecular mechanism remains undefined. Suspected risk factors of young onset CRC include environmental aspects, such as lifestyle and dietary factors, which are known to affect the circadian clock. We find that both genetic disruption and environmental disruption of the circadian clock accelerate driven CRC pathogenesis in vivo.

View Article and Find Full Text PDF

Isolation of primary hepatocytes and culturing these cells ex vivo provides a powerful platform to model liver physiology in vivo. Primary hepatocytes can be cultured for several days, the circadian clock can be synchronized, and these primary cells can be utilized for functional gene regulation analysis and metabolic studies. In this chapter, we describe detailed methodology for isolation of viable primary hepatocytes, techniques for culturing these cells, methods for synchronization of the circadian clock, transfection and luciferase reporter analysis, as well as glucose production assays as a functional readout of metabolic state.

View Article and Find Full Text PDF

The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations.

View Article and Find Full Text PDF

Ischemia/reperfusion (I/R) injury unavoidably occurs during hepatic resection and transplantation. Aged livers poorly tolerate I/R during surgical treatment. Although livers have a powerful endogenous inhibitor of calpains, calpastatin (CAST), I/R activates calpains, leading to impaired autophagy, mitochondrial dysfunction, and hepatocyte death.

View Article and Find Full Text PDF

Lung adenocarcinoma is associated with cachexia, which manifests as an inflammatory response that causes wasting of adipose tissue and skeletal muscle. We previously reported that lung tumor-bearing (TB) mice exhibit alterations in inflammatory and hormonal signaling that deregulate circadian pathways governing glucose and lipid metabolism in the liver. Here, we define the molecular mechanism of how de novo glucose production in the liver is enhanced in a model of lung adenocarcinoma.

View Article and Find Full Text PDF

Ischemia/reperfusion (I/R) injury is a causative factor contributing to morbidity and mortality during liver resection and transplantation. Livers from elderly patients have a poorer recovery from these surgeries, indicating reduced reparative capacity with aging. Mechanisms underlying this age-mediated hypersensitivity to I/R injury remain poorly understood.

View Article and Find Full Text PDF

Aims: We have previously identified a chemical scaffold possessing 2-ethoxypropanoic acid (designated as KS15) that directly binds to the C-terminal region of cryptochromes (CRYs: CRY1 and CRY2) and enhances E-box-mediated transcription. However, it is still unclear how KS15 impairs the feedback actions of the CRYs and which chemical moieties are functionally important for its actions.

Main Methods: The E-box-mediated transcriptional activities were mainly used to examine the effects of KS15 and its derivatives.

View Article and Find Full Text PDF

Hepatic steatosis prevails each year. Autophagy is integral in mitochondrial quality control and lipid homeostasis in the liver. No pharmacological strategies are currently available to reduce hepatic steatosis, but exercise has been known to improve clinical outcomes of chronic liver disease, particularly nonalcoholic fatty liver disease (NAFLD).

View Article and Find Full Text PDF
Article Synopsis
  • - Non-alcoholic fatty liver disease (NAFLD) is a common issue in people who are obese, and a key player in this process is Adenine nucleotide translocase (ANT), which helps transport ADP and ATP in liver cells.
  • - Researchers found that knocking out the Ant2 gene in mouse livers increased their ability to burn energy without harming liver health, leading to leaner mice that were more resistant to fatty liver and obesity, even when fed a high-fat diet.
  • - The study suggests that inhibiting ANT could be a potential strategy for treating NAFLD and obesity, as seen with the positive effects of a low-dose specific inhibitor, carboxyatractyloside.
View Article and Find Full Text PDF

No-flow ischemia occurs during cardiac arrest, hemorrhagic shock, liver resection and transplantation. Recovery of blood flow and normal physiological pH, however, irreversibly injures the liver and other tissues. Although the liver has the powerful machinery for mitochondrial quality control, a process called mitophagy, mitochondrial dysfunction and subsequent cell death occur after reperfusion.

View Article and Find Full Text PDF

Background: Hes6 is a transcriptional regulator that induces transcriptional activation by binding to transcription repressor Hes1 and suppressing its activity. Hes6 is controlled by the ubiquitin-proteosome-mediated degradation system. Here we investigated the sumoylation of Hes6 and its functional role in its rhythmic expression.

View Article and Find Full Text PDF

Disruption of circadian rhythm is a major cause of breast cancer in humans. Cryptochrome (CRY), a circadian transcription factor, is a risk factor for initiation of breast cancer, and it is differentially expressed between normal and breast cancer tissues. Here, we evaluated the anti-proliferative and pro-apoptotic activity of KS15, a recently discovered small-molecule inhibitor of CRY, in human breast cancer cells.

View Article and Find Full Text PDF

CLOCK-BMAL1 is a key transcription factor complex of the molecular clock system that generates circadian gene expression and physiology in mammals. Here, we demonstrate that sumoylation of BMAL1 mediates the rapid activation of CLOCK-BMAL1 by CREB-binding protein (CBP) in nuclear foci and also the resetting of the circadian clock. Under physiological conditions, a bimolecular fluorescence complementation-based fluorescence resonance energy transfer (BiFC-FRET) assay revealed that CLOCK-BMAL1 rapidly dimerized and formed a ternary complex with CBP in discrete nuclear foci in response to serum stimuli.

View Article and Find Full Text PDF

Pulsatile secretion of hypothalamic gonadotropin-releasing hormone (GnRH) is indispensable for controlling proper pituitary gonadotrope functions; however, the mechanism underlying GnRH pulse generation remains largely unknown. It is important to understand the cellular oscillator in individual GnRH neurons and temporal synchronization among GnRH neurons. In this brief review, we summarize our recent findings on episodic GnRH gene transcription at the single GnRH neuron level and in synchronized multicellular burst in relation to the temporal pattern of GnRH secretion.

View Article and Find Full Text PDF

Background: In mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions.

View Article and Find Full Text PDF

Circadian rhythms, biological oscillations with a period of about 24 h, are maintained by a genetically determined innate time-keeping system called the molecular circadian clockwork. Despite the physiological and clinical importance of the circadian clock, the development of small molecule modulators that directly target the core clock machinery has only been recently initiated. In the present study, we aimed to identify novel small molecule modulators influencing the molecular feedback loop of the circadian clock by applying our two-step cell-based screening strategy based on E-box-mediated transcriptional activity to test more than 1000 drug-like compounds.

View Article and Find Full Text PDF