Publications by authors named "Sung-Jun Lim"

Article Synopsis
  • Peripheral vascular interventions (PVIs) are less painful, require simpler anesthesia, and have shorter recovery times than traditional surgery, but they involve X-ray fluoroscopy, which can harm both patients and doctors.
  • The study introduces a quantum dot (QD)-based magnetic guidewire system that allows for X-ray-free imaging using shortwave infrared (SWIR) technology, enhancing safety during procedures.
  • The QD guidewire is made of a flexible silicone tube with QDs for bioimaging and includes a permanent magnet for precise navigation, showing promise for future use in clinical settings due to its biocompatibility and resistance to degradation.
View Article and Find Full Text PDF

Although the number of patients with eye diseases is increasing, efficient drug delivery to the posterior segment of the eyeball remains challenging. The reasons include the unique anatomy of the eyeball, the blood-aqueous barrier, the blood-retina barrier, and drug elimination via the anterior chamber and uveoscleral routes. Solutions to these obstacles for therapeutic delivery to the posterior segment will increase the efficacy, efficiency, and safety of ophthalmic treatment.

View Article and Find Full Text PDF

Composites comprising copper-doped zinc sulfide phosphor microparticles embedded in polydimethylsiloxane (ZnS:Cu-PDMS) have received significant attention over the past decade because of their bright and durable mechanoluminescence (ML); however, the underlying mechanism of this unique ML remains unclear. This study reports empirical and theoretical findings that confirm this ML is an electroluminescence (EL) of the ZnS:Cu phosphor induced by the triboelectricity generated at the ZnS:Cu microparticle-PDMS matrix interface. ZnS:Cu microparticles that exhibit bright ML are coated with alumina, an oxide with strong positive triboelectric properties; the contact separation between this oxide coating and PDMS, a polymer with strong negative triboelectric properties, produces sufficient interfacial triboelectricity to induce EL in ZnS:Cu microparticles.

View Article and Find Full Text PDF

Cd Hg Se/HgS/Cd Zn S core/multi-shell quantum dots (QDs) exhibiting bright tissue-penetrating shortwave infrared (SWIR; 1000-1700 nm) photoluminescence (PL) are engineered. The new structure consists of a quasi-type-II Cd Hg Se/HgS core/inner shell domain creating luminescent bandgap tunable across SWIR window and a wide-bandgap Cd Zn S outer shell boosting the PL quantum yield (QY). This compositional sequence also facilitates uniform and coherent shell growth by minimizing interfacial lattice mismatches, resulting in high QYs in both organic (40-80%) and aqueous (20-70%) solvents with maximum QYs of 87 and 73%, respectively, which are comparable to those of brightest visible-to-near infrared QDs.

View Article and Find Full Text PDF

Antibody conjugates of quantum dots (QDs) are expected to transform immunofluorescence staining by expanding multiplexed analysis and improving target quantification. Recently, a new generation of small QDs coated with multidentate polymers has improved QD labeling density in diverse biospecimens, but new challenges prevent their routine use. In particular, these QDs exhibit nonspecific binding to fixed cell nuclei and their antibody conjugates have random attachment orientations.

View Article and Find Full Text PDF

By the reaction of inorganic-ligand CdS/Cd quantum dots (QDs) with inorganic-ligand CdSe/CdS/S nanoplatelets (NPLs), semiconductor CdS QDs were fused with CdSe/CdS NPLs to yield all-inorganic assemblies, accompanied by great photoluminescence-enhancement. These all-inorganic assemblies facilitate charge transport between each other and open up interesting prospects with electronic and optoelectronic nanodevices.

View Article and Find Full Text PDF

Few studies have explored how nurses in acute care hospitals perceive and perform end-of-life care in Korea. Therefore, this study aimed to evaluate the influence of nurses' perceptions of death on end-of-life care performance and analyze the mediating role of attitude towards end-of-life care among hospital nurses. This cross-sectional study included a total of 250 nurses who have had experience with end-of-life care from four general hospitals in Korea.

View Article and Find Full Text PDF

Objectives: There are no pharmacovigilance studies on adverse event (AE) data for tumour necrosis factor alpha (TNFα) inhibitors in South Korea. We analysed AEs induced by adalimumab, infliximab, and etanercept METHODS: We used data from the Korea Institute of Drug Safety and Risk Management-Korea Adverse Events Reporting System Database (KIDS-KD) collected between 2005 and 2016. We used three different signal detection methods: proportional reporting ratio (PRR), reporting odds ratio (ROR), and information component (IC).

View Article and Find Full Text PDF

In this chapter, we describe the preparation of fluorescent quantum dots for imaging and measuring protein expression in cells. Quantum dots are nanocrystals that have numerous advantages for biomolecular detection compared with organic dyes and fluorescent proteins, but their large size has been a limiting factor. We describe the synthesis of nanoparticles smaller than 10 nm (smaller than an antibody), their attachment to monoclonal antibodies through click chemistry, characterization of the conjugates, and use for labeling of cellular antigens.

View Article and Find Full Text PDF

Lead-free, water-resistant photovoltaic absorbers are of significant interest for use in environment-friendly and water-stable thin film solar cells. However, there are no reports on the water-resistance characteristics of such photoactive materials. Here, we demonstrate that silver bismuth sulfide (AgBiS2) nanocrystal solids exhibit inherent water resistance and can be employed as effective photovoltaic absorbers in all-solid-state thin film solar cells that show outstanding air and moisture stabilities under ambient conditions.

View Article and Find Full Text PDF

The distribution of single-cell properties across a population of cells can be measured using diverse tools, but no technology directly quantifies the biochemical stimulation events regulating these properties. Here we report digital counting of growth factors in single cells using fluorescent quantum dots and calibrated three-dimensional deconvolution microscopy (QDC-3DM) to reveal physiologically relevant cell stimulation distributions. We calibrate the fluorescence intensities of individual compact quantum dots labeled with epidermal growth factor (EGF) and demonstrate the necessity of near-infrared emission to overcome intrinsic cellular autofluoresence at the single-molecule level.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) is the primary technology used to image and count mRNA in single cells, but applications of the technique are limited by photophysical shortcomings of organic dyes. Inorganic quantum dots (QDs) can overcome these problems but years of development have not yielded viable QD-FISH probes. Here we report that macromolecular size thresholds limit mRNA labeling in cells, and that a new generation of compact QDs produces accurate mRNA counts.

View Article and Find Full Text PDF

Illicit psychoactive substances have threatened public health worldwide. An active metabolite of ADB-CHMINACA and MDMB-CHMINACA was identified for the first time in a powder-type product found in an airmail package. The structure of compound 1 was elucidated by a combination of gas chromatography-mass spectrometry (GC-MS), liquid chromatography-high resolution mass spectrometry (LC-HRMS), infrared (IR) spectroscopy, and nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

We report on the implementation of an automated platform for detecting the presence of an antibody biomarker for human papillomavirus-associated oropharyngeal cancer from a single droplet of serum, in which a nanostructured photonic crystal surface is used to amplify the output of a fluorescence-linked immunosorbent assay. The platform is comprised of a microfluidic cartridge with integrated photonic crystal chips that interfaces with an assay instrument that automates the introduction of reagents, wash steps, and surface drying. Upon assay completion, the cartridge interfaces with a custom laser-scanning instrument that couples light into the photonic crystal at the optimal resonance condition for fluorescence enhancement.

View Article and Find Full Text PDF

Inefficient delivery of macromolecules and nanoparticles to intracellular targets is a major bottleneck in drug delivery, genetic engineering, and molecular imaging. Here we apply live-cell single-quantum-dot imaging and tracking to analyze and classify nanoparticle states after intracellular delivery. By merging trajectory diffusion parameters with brightness measurements, multidimensional analysis reveals distinct and heterogeneous populations that are indistinguishable using single parameters alone.

View Article and Find Full Text PDF

Quantum dots are fluorescent nanoparticles with narrow-band, size-tunable, and long-lasting emission. Typical formulations used for imaging proteins in cells are hydrodynamically much larger than the protein targets, so it is critical to assess the impact of steric effects deriving from hydrodynamic size. This report analyzes a new class of quantum dots that have been engineered for minimized size specifically for imaging receptors in narrow synaptic junctions between neurons.

View Article and Find Full Text PDF

Optical, electronic and structural properties of nanocrystals fundamentally derive from crystal phase. This is especially important for polymorphic II-VI, III-V and I-III-VI semiconductor materials such as cadmium selenide, which exist as two stable phases, cubic and hexagonal, each with distinct properties. However, standard crystallographic characterization through diffraction yields ambiguous phase signatures when nanocrystals are small or polytypic.

View Article and Find Full Text PDF

The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research.

View Article and Find Full Text PDF

Nanocrystals composed of mixed chemical domains have diverse properties that are driving their integration in next-generation electronics, light sources, and biosensors. However, the precise spatial distribution of elements within these particles is difficult to measure and control, yet profoundly impacts their quality and performance. Here we synthesized a unique series of 42 different quantum dot nanocrystals, composed of two chemical domains (CdS:CdSe), arranged in 7 alloy and (core)shell structural classes.

View Article and Find Full Text PDF

A compact analysis platform for detecting liquid absorption and emission spectra using a set of optical linear variable filters atop a CMOS image sensor is presented. The working spectral range of the analysis platform can be extended without a reduction in spectral resolution by utilizing multiple linear variable filters with different wavelength ranges on the same CMOS sensor. With optical setup reconfiguration, its capability to measure both absorption and fluorescence emission is demonstrated.

View Article and Find Full Text PDF

Quantum dots are fluorescent nanoparticles used to detect and image proteins and nucleic acids. Compared with organic dyes and fluorescent proteins, these nanocrystals have enhanced brightness, photostability, and wavelength tunability, but their larger size limits their use. Recently, multidentate polymer coatings have yielded stable quantum dots with small hydrodynamic dimensions (≤10 nm) due to high-affinity, compact wrapping around the nanocrystal.

View Article and Find Full Text PDF

Semiconductor nanoplatelets (NPLs) are planar nanocrystals that have recently attracted considerable attention due to their quantum-well-like physics, atomically precise thickness, and unique photophysical properties such as narrow-band fluorescence emission. These attributes are of potential interest for applications in biomolecular and cellular imaging, but it has been challenging to colloidally stabilize these nanocrystals in biological media due to their large dimensions and tendency to aggregate. Here we introduce a new colloidal material that is a hybrid between a NPL and an organic nanodisc composed of phospholipids and lipoproteins.

View Article and Find Full Text PDF

As molecular labels for cells and tissues, fluorescent probes have shaped our understanding of biological structures and processes. However, their capacity for quantitative analysis is limited because photon emission rates from multicolour fluorophores are dissimilar, unstable and often unpredictable, which obscures correlations between measured fluorescence and molecular concentration. Here we introduce a new class of light-emitting quantum dots with tunable and equalized fluorescence brightness across a broad range of colours.

View Article and Find Full Text PDF

Immunofluorescence, a powerful technique to detect specific targets using fluorescently labeled antibodies, has been widely used in both scientific research and clinical diagnostics. The probes should be made with small antibodies and high brightness. We conjugated GFP binding protein (GBP) nanobodies, small single-chain antibodies from llamas, with new ∼7 nm quantum dots.

View Article and Find Full Text PDF

We developed a coating method to produce functionalized small quantum dots (sQDs), about 9 nm in diameter, that were stable for over a month. We made sQDs in four emission wavelengths, from 527 to 655 nm and with different functional groups. AMPA receptors on live neurons were labeled with sQDs and postsynaptic density proteins were visualized with super-resolution microscopy.

View Article and Find Full Text PDF