Publications by authors named "Sung-Gyu Cho"

Anti-tuberculosis (AT) medications, including isoniazid (INH), can cause drug-induced liver injury (DILI), but the underlying mechanism remains unclear. In this study, we aimed to identify genetic factors that may increase the susceptibility of individuals to AT-DILI and to examine genetic interactions that may lead to isoniazid (INH)-induced hepatotoxicity. We performed a targeted sequencing analysis of 380 pharmacogenes in a discovery cohort of 112 patients (35 AT-DILI patients and 77 controls) receiving AT treatment for active tuberculosis.

View Article and Find Full Text PDF

Background: Mitochondria are dynamic organelles that undergo fission and fusion. During cell stress, mitochondrial dynamics shift to fission, leading to mitochondrial fragmentation, membrane leakage, and apoptosis. Mitochondrial fragmentation requires the cleavage of both outer and inner membranes, but the mechanism of inner membrane cleavage is unclear.

View Article and Find Full Text PDF

Interferon regulatory factor-5 (IRF-5), a member of the mammalian IRF transcription factor family, is regulated by p53, type I interferon and virus infection. IRF-5 participates in virus-induced TLR-mediated innate immune responses and may play a role as a tumor suppressor. It was suppressed in various EBV-infected transformed cells, thus it is valuable to identify the suppression mechanism.

View Article and Find Full Text PDF

Objective: To determine if mutations in NELF, a gene isolated from migratory GnRH neurons, cause normosmic idiopathic hypogonadotropic hypogonadism (IHH) and Kallmann syndrome (KS).

Design: Molecular analysis correlated with phenotype.

Setting: Academic medical center.

View Article and Find Full Text PDF

Recent studies have shown mitochondrial fragmentation during cell stress and have suggested a role for the morphological change in mitochondrial injury and ensuing apoptosis. However, the underlying mechanism remains elusive. Here we demonstrate that mitochondrial fragmentation facilitates Bax insertion and activation in mitochondria, resulting in the release of apoptogenic factors.

View Article and Find Full Text PDF

Recent studies revealed a striking morphological change of mitochondria during apoptosis. Mitochondria become fragmented and notably, the fragmentation contributes to mitochondrial outer membrane permeabilization and consequent release of apoptotic factors. In renal tubular cells, mitochondrial fragmentation involves the activation of Drp1, a key mitochondrial fission protein.

View Article and Find Full Text PDF

The mechanism of mitochondrial damage, a key contributor to renal tubular cell death during acute kidney injury, remains largely unknown. Here, we have demonstrated a striking morphological change of mitochondria in experimental models of renal ischemia/reperfusion and cisplatin-induced nephrotoxicity. This change contributed to mitochondrial outer membrane permeabilization, release of apoptogenic factors, and consequent apoptosis.

View Article and Find Full Text PDF