Background Deep learning (DL) may facilitate the diagnosis of various pancreatic lesions at imaging. Purpose To develop and validate a DL-based approach for automatic identification of patients with various solid and cystic pancreatic neoplasms at abdominal CT and compare its diagnostic performance with that of radiologists. Materials and Methods In this retrospective study, a three-dimensional nnU-Net-based DL model was trained using the CT data of patients who underwent resection for pancreatic lesions between January 2014 and March 2015 and a subset of patients without pancreatic abnormality who underwent CT in 2014.
View Article and Find Full Text PDF