Publications by authors named "Sung Y Eum"

We evaluated the mechanistic link between circadian rhythms and gut barrier permeability. Mice were subjected to either constant 24-h light (LL) or 12-h light/dark cycles (LD). Mice housed in LL experienced a significant increase in gut barrier permeability that was associated with dysregulated ß-catenin expression and altered expression of tight junction (TJ) proteins.

View Article and Find Full Text PDF

Purpose: Genetic variations in DNA damage repair (DDR) genes may influence radiation therapy (RT)-induced acute normal tissue toxicity in patients with breast cancer. Identifying an individual or multiple single-nucleotide polymorphisms (SNPs) associated with RT-induced early adverse skin reactions (EASR) is critical for precision medicine in radiation oncology.

Methods And Materials: At the completion of RT, EASR was assessed using the Oncology Nursing Society scale (0-6) in 416 patients with breast cancer, and Oncology Nursing Society score ≥4 was considered RT-induced EASR.

View Article and Find Full Text PDF

Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light-dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles.

View Article and Find Full Text PDF

Occludin is an essential integral transmembrane protein regulating tight junction (TJ) integrity in brain endothelial cells. Phosphorylation of occludin is associated with its localization to TJ sites and incorporation into intact TJ assembly. The present study is focused on the role of lipid rafts in polychlorinated biphenyl (PCB)-induced disruption of occludin and endothelial barrier function.

View Article and Find Full Text PDF

Selenium-containing compounds and selenized yeast have anticancer properties. In order to address possible mechanisms involved in these effects, selenoglycoproteins (SGPs) were extracted from selenium-enriched yeast at pH 4.0 and 6.

View Article and Find Full Text PDF

Background And Aims: Increased amyloid deposition in HIV-infected brains may contribute to the pathogenesis of neurocognitive dysfunction in infected patients. We have previously shown that exposure to HIV results in enhanced amyloid β (Aβ) levels in human brain microvascular endothelial cells, suggesting that brain endothelial cells contribute to accumulation of Aβ in HIV-infected brains. Importantly, Aβ not only accumulates in the cytoplasm of HIV-exposed cells but also enters the nuclei of brain endothelial cells.

View Article and Find Full Text PDF

The intestinal epithelium forms a selective barrier maintained by tight junctions (TJs) and separating the luminal environment from the submucosal tissues. N-acylhomoserine lactone (AHL) quorum-sensing molecules produced by gram-negative bacteria in the gut can influence homeostasis of the host intestinal epithelium. In the present study, we evaluated the regulatory mechanisms affecting the impact of two representative long- and short-chain AHLs, N-3-(oxododecanoyl)-homoserine lactone (C12-HSL) and N-butyryl homoserine lactone (C4-HSL), on barrier function of human intestinal epithelial Caco-2 cells.

View Article and Find Full Text PDF

PCBs bind to environmental particles; however, potential toxicity exhibited by such complexes is not well understood. The aim of the present study is to study the hypothesis that assembling onto nanoparticles can influence the PCB153-induced brain endothelial toxicity via interaction with the toll-like receptor 4 (TLR4). To address this hypothesis, TLR4-deficient and wild type control mice (males, 10 week old) were exposed to PCB153 (5 ng/g body weight) bound to chemically inert silica nanoparticles (PCB153-NPs), PCB153 alone, silica nanoparticles (NPs; diameter, 20 nm), or vehicle.

View Article and Find Full Text PDF

Background: The gut microbiome, a dynamic bacterial community that interacts with the host, is integral to human health because it regulates energy metabolism and immune functions. The gut microbiome may also play a role in risks from environmental toxicants.

Objectives: We investigated the effects of polychlorinated biphenyls (PCBs) and exercise on the composition and structure of the gut microbiome in mice.

View Article and Find Full Text PDF

Exposure to polychlorinated biphenyls (PCBs) is associated with numerous adverse health effects. Although the main route of exposure to PCBs is through the gastrointestinal tract, little is known about the contribution of the gut to the health effects of PCBs. We hypothesize that PCBs can disrupt intestinal integrity, causing lipopolysaccharide (LPS) translocation into the bloodstream and potentiation of the systemic toxicity of PCBs.

View Article and Find Full Text PDF

Amyloid beta (Aβ) levels are increased in HIV-1 infected brains due to not yet fully understood mechanisms. In the present study, we investigate the role of lipid rafts, functional caveolae, and caveolae-associated signaling in HIV-1-induced Aβ accumulation in HBMEC. Both silencing of caveolin-1 (cav-1) and disruption of lipid rafts by pretreatment with beta-methyl-cyclodextrin (MCD) protected against Aβ accumulation in HBMEC.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) are environmental toxicants that cause vascular inflammation and facilitate the development of brain metastases. The crucial event in metastasis formation is adhesion of blood-borne tumor cells to the vascular endothelium, followed by their transcapillary migration. The aim of the present study was to examine the mechanisms of PCB118-induced brain metastasis formation at the blood-brain barrier level with the focus on tumor cell adhesion to the brain endothelium.

View Article and Find Full Text PDF

The human immunodeficiency virus (HIV)-specific protein trans-activator of transcription (Tat) can contribute to the dysfunction of brain endothelial cells and HIV trafficking into the brain by disrupting tight junction (TJ) integrity at the blood-brain barrier (BBB) level. Specific TJ proteins, such as zonula occludens (ZO) proteins, localize not only at the cell-cell borders but are also present in the nuclei. The objective of the present study was to evaluate the mechanisms and significance of Tat-induced nuclear localization of ZO-1.

View Article and Find Full Text PDF

Epidemiology and genetic studies indicate that patients with telomere length shorter than average are at higher risk of dying from heart disease or stroke. Telomeres are located at the ends of eukaryotic chromosomes, which demonstrate progressive length reduction in most somatic cells during aging. The enzyme telomerase can compensate for telomere loss during cell replication.

View Article and Find Full Text PDF

Exposure to environmental contaminants, such as polychlorinated biphenyls (PCBs), is a risk factor for the development of cardiovascular diseases such as atherosclerosis. Vascular cell adhesion molecule-1 (VCAM-1) is a critical mediator for adhesion and uptake of monocytes across the endothelium in the early stages of atherosclerosis development. The upregulation of VCAM-1 by PCBs may be dependent on functional membrane domains called caveolae.

View Article and Find Full Text PDF

Background: Polychlorinated biphenyls (PCBs) are widely distributed environmental toxicants that contribute to numerous disease states. The main route of exposure to PCBs is through the gastrointestinal tract; however, little is known about the effects of PCBs on intestinal epithelial barrier functions.

Objective: The aim of the present study was to address the hypothesis that highly chlorinated PCBs can disrupt gut integrity at the level of tight junction (TJ) proteins.

View Article and Find Full Text PDF

HIV-1-infected brains are characterized by increased amyloid deposition. To study the influence of HIV-1 on amyloid beta (Abeta) homeostasis at the blood-brain barrier (BBB) level, we employed a model of brain microvascular endothelial cells exposed to HIV-1 in the presence or absence of Abeta. HIV-1 markedly increased endogenous Abeta levels and elevated accumulation of exogenous Abeta.

View Article and Find Full Text PDF

Exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), can lead to chronic inflammation and the development of vascular diseases. Because cell adhesion molecules (CAMs) of the cerebrovascular endothelium regulate infiltration of inflammatory cells into the brain, we have explored the molecular mechanisms by which ortho-substituted polychlorinated biphenyls (PCBs), such as PCB153, can upregulate CAMs in brain endothelial cells. Exposure to PCB153 increased expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as well as elevated adhesion of leukocytes to brain endothelial cells.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) plays an important role in HIV trafficking into the brain and the development of the central nervous system complications in HIV infection. Tight junctions are the main structural and functional elements that regulate the BBB integrity. Exposure of human brain microvascular endothelial cells (hCMEC/D3 cell line) to HIV-infected monocytes resulted in decreased expression of tight junction proteins, such as junctional adhesion molecule-A (JAM)-A, occludin, and zonula occludens (ZO)-1.

View Article and Find Full Text PDF

Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors which down-regulate inflammatory signaling pathways. Therefore, we hypothesized that alterations of PPAR functions can contribute to human immunodeficiency virus-1 (HIV-1)-induced dysfunction of brain endothelial cells. Indeed, treatment with HIV-1 transactivator of transcription (Tat) protein decreased PPAR transactivation in brain endothelial cells.

View Article and Find Full Text PDF

Polychlorinated biphenyl (PCB) congeners exhibit a broad range of adverse biological effects including neurotoxicity. The mechanisms by which PCBs cause neurotoxic effects are still not completely understood. The blood-brain barrier (BBB) is a physical and metabolic barrier separating brain microenvironment from the peripheral circulation and is mainly composed of endothelial cells connected by tight junctions.

View Article and Find Full Text PDF

Tat protein released from HIV-infected blood-borne leukocytes can contribute to the breakdown of the blood-brain barrier (BBB) and induction of inflammatory responses and can provide entry for HIV into the brain. To mimic this pathology, Tat was injected into the tail vein of C57BL/6 mice. Treatment with Tat markedly upregulated expression of cyclooxygenase-2 (COX-2) and decreased expression of tight junction proteins, occludin and zonula occludens-1 (ZO-1).

View Article and Find Full Text PDF

We hypothesize that environmental toxicants, such as polychlorinated biphenyl congeners, can activate vascular endothelial cells and thus increase formation of blood-borne metastases. This study indicates that exposure of human microvascular endothelial cells to 2,2',4,6,6'-pentachlorobiphenyl can stimulate transendothelial migration of tumor cells through up-regulation of matrix metalloproteinase (MMP)-3. In a series of experiments with specific small interfering RNA and pharmacologic inhibitors, we provide evidence that 2,2',4,6,6'-pentachlorobiphenyl can activate epidermal growth factor receptor (EGFR) and Janus kinase 3 (JAK3) in a closely coordinated and cross-dependent fashion.

View Article and Find Full Text PDF

Interleukin-8/CXCL8 (IL-8) is a prominent factor that modulates endothelial cell proliferation, migration, and angiogenesis. Therefore, the present study focused on the regulatory mechanisms of IL-8 expression induced by environmental pollutants such as polychlorinated biphenyls (PCBs). Treatment of human microvascular endothelial cells (HMECs) with specific PCB congener, 2,2',4,6,6'-pentachlorobiphenyl (PCB 104), dose dependently increased levels of IL-8 mRNA and secreted protein.

View Article and Find Full Text PDF

Central nervous system (CNS) complications of human immunodeficiency virus (HIV) infection remain a serious health risk in HIV/acquired immunodeficiency syndrome despite significant advances in highly active antiretroviral therapy (HAART). Specific drugs used for HAART are substrates for the efflux transport systems, such as the multidrug resistance-associated proteins (MRPs), which are present on brain microvascular endothelial cells (BMEC) and astrocytes, that is, the main cell types that form the blood-brain barrier (BBB). Thus, drugs employed in HAART are actively removed from the CNS and do not efficiently inhibit HIV replication in the brain.

View Article and Find Full Text PDF