Publications by authors named "Sung Won Oh"

Nucleic acid detection plays a crucial role in various applications, including disease diagnostics, research development, food safety, and environmental health monitoring. A rapid, point-of-care (POC) nucleic acid test can greatly benefit healthcare system by providing timely diagnosis for effective treatment and patient management, as well as supporting diseases surveillance for emerging pandemic diseases. Recent advancements in nucleic acids technology have led to rapid assays for single-stranded nucleic acids that can be integrated into simple and miniaturized platforms for ease of use.

View Article and Find Full Text PDF

Substrate confinement and channeling play a critical role in multienzyme pathways and are considered to impact the catalytic efficiency and specificity of biomimetic and artificial nanoreactors. Here we reported a modulation of a multienzyme system with the cascade activity impacted by the surface affinity binding to substrate molecules. A DNA origami modified with aptamers was used to bind and enrich ATP molecules in the local area of immobilized enzymes, thereby enhancing the activity of an enzyme cascade by more than 2-fold.

View Article and Find Full Text PDF

Multienzyme reactions play an important role in cellular metabolic functions. The assembly of a metabolon is often observed, in which the position and the orientation of composite enzymes are optimized to facilitate the substrate transport. The recent progress of DNA nanotechnology is promising to organize the assembly of bimolecular complexes with precise controlled geometric patterns at nanoscale, such as enzyme cascades assembly, biomimetic substrate channeling, and compartmentalization.

View Article and Find Full Text PDF

An urgent need exists for a rapid, cost-effective, facile, and reliable nucleic acid assay for mass screening to control and prevent the spread of emerging pandemic diseases. This urgent need is not fully met by current diagnostic tools. In this review, we summarize the current state-of-the-art research in novel nucleic acid amplification and detection that could be applied to point-of-care (POC) diagnosis and mass screening of diseases.

View Article and Find Full Text PDF

Cellular functions rely on a series of organized and regulated multienzyme cascade reactions. The catalytic efficiencies of these cascades depend on the precise spatial organization of the constituent enzymes, which is optimized to facilitate substrate transport and regulate activities. Mimicry of this organization in a non-living, artificial system would be very useful in a broad range of applications-with impacts on both the scientific community and society at large.

View Article and Find Full Text PDF

Here we reported a study of metal ions-assisted assembly of DNA-minocycline (MC) complexes and their potential application for controlling MC release. In the presence of divalent cations of magnesium or calcium ions (M), MC, a zwitterionic tetracycline analogue, was found to bind to phosphate groups of nucleic acids via an electrostatic bridge of phosphate (DNA)-M-MC. We investigated multiple parameters for affecting the formation of DNA-Mg-MC complex, including metal ion concentrations, base composition, DNA length, and single- versus double-stranded DNA.

View Article and Find Full Text PDF

The behaviors of living cells are governed by a series of regulated and confined biochemical reactions. The design and successful construction of synthetic cellular reactors can be useful in a broad range of applications that will bring significant scientific and economic impact. Over the past few decades, DNA self-assembly has enabled the design and fabrication of sophisticated 1D, 2D, and 3D nanostructures, and is applied to organizing a variety of biomolecular components into prescribed 2D and 3D patterns.

View Article and Find Full Text PDF

Smart nanodevices that integrate molecular recognition and signal production hold great promise for the point-of-care (POC) diagnostic applications. Herein, the development of a DNA-mediated proximity assembly of biochemical reactions, which was capable of sensing various bio-targets and reporting easy-to-read signals is reported. The circuit was composed of a DNA hairpin-locked catalytic cofactor with inhibited activity.

View Article and Find Full Text PDF

We present a robust and simple method to prepare DNA-crowded enzyme complexes by directly assembling long DNA duplexes on the enzyme surface. DNA-crowded enzyme complexes show boosted substrate turnover numbers, and increased stabilities against various storage conditions. They could be potentially scaled up for applications in biomaterials and biotechnology.

View Article and Find Full Text PDF

Theranostic medicine has become more promising in cancer treatment, where the cancer diagnosis and chemotherapy are combined for early diagnosis and precise treatment with improved efficacy and reduced side effects. Nanotechnology has played a critical role in developing various nanomaterials with engendered smart functions and targeted delivery. The rapid development of structural DNA nanotechnology has enabled the design and fabrication of complex nanostructures with prescribed 1D, 2D and 3D patterns in vitro and in vivo.

View Article and Find Full Text PDF