Background: Amiodarone is an effective anti-arrhythmic drug; however, it is frequently associated with thyroid dysfunction. The aim of this study was to investigate the incidence and risk factor of amiodarone-induced dysfunction in an iodine-sufficient area.
Methods: This retrospective cohort study included 27,023 consecutive patients treated with amiodarone for arrhythmia, using the Korean National Health Insurance database.
Purpose: Improvement of left ventricular (LV) diastolic dysfunction (DD) is known to be a good prognostic factor in patients with heart failure with reduced ejection fraction (EF). In the present study, we investigated the predisposing risk factors affecting the reversibility of LV diastolic filling pattern (DFP) in patients with preserved EF.
Materials And Methods: A total of 600 patients with pseudonormal LVDFP and preserved EF who underwent follow-up echocardiography were enrolled between 2011 and 2020.
Differential equations are pivotal in modeling and understanding the dynamics of various systems, as they offer insights into their future states through parameter estimation fitted to time series data. In fields such as economy, politics, and biology, the observation data points in the time series are often independently obtained (i.e.
View Article and Find Full Text PDFMedical stents are vital for treating vascular complications and restoring blood flow in millions of patients. Despite its widespread effectiveness, restenosis, driven by the complex interplay of cellular responses, remains a concern. This study investigated the reactions of vascular cells to nano/microscale wrinkle (nano-W and micro-W) patterns created on laser-textured nitinol (NiTi) surfaces by adjusting laser processing parameters, such as spot overlap ratio and line overlap ratio.
View Article and Find Full Text PDFBackground: Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by persistent inflammatory cascades, with macrophage activation playing a pivotal role. Chitinase 1 (CHIT1), produced by activated macrophages, is a key player in this cascade. In this study, we aimed to explore the role of CHIT1 in MASH with progressive liver fibrosis.
View Article and Find Full Text PDFMelanogenesis, a natural responsive mechanism of human skin to harmful radiation, is a self-triggered defensive neural activity safeguarding the body from radiation exposure in advance. With the increasing significance of radiation shielding in diverse medical health care and wearable applications, a biomimetic neuromorphic optoelectronic system with adaptive radiation shielding capability is often needed. Here, we demonstrate a transparent and flexible metal oxide-based photovoltaic neuromorphic defensive system.
View Article and Find Full Text PDFCardiovasc Diabetol
September 2024
The implementation of photoelectrochemical water purification technology can address prevailing environmental challenges that impede the advancement and prosperity of human society. In this study, Cu, which is abundant on Earth, was fabricated using an electrochemical deposition process, in which the preferential orientation direction and carrier concentration of the Cu-based oxide semiconductor were artificially adjusted by carefully controlling the OH and applied voltage. In particular, CuO grown with a sufficient supply of OH ions exhibited the (111) preferred orientation, and the (200) surface facet was exposed, independently achieving 90% decomposition efficiency in a methyl orange (MO) solution for 100 min.
View Article and Find Full Text PDFNeuromorphic olfactory systems have been actively studied in recent years owing to their considerable potential in electronic noses, robotics, and neuromorphic data processing systems. However, conventional gas sensors typically have the ability to detect hazardous gas levels but lack synaptic functions such as memory and recognition of gas accumulation, which are essential for realizing human-like neuromorphic sensory system. In this study, a seamless architecture for a neuromorphic olfactory system capable of detecting and memorizing the present level and accumulation status of nitrogen dioxide (NO) during continuous gas exposure, regulating a self-alarm implementation triggered after 147 and 85 s at a continuous gas exposure of 20 and 40 ppm, respectively.
View Article and Find Full Text PDFFKF1 dimerization is crucial for proper FT levels to fine-tune flowering time. Attenuating FKF1 homodimerization increased CO abundance by enhancing its COP1 binding, thereby accelerating flowering under long days. In Arabidopsis (Arabidopsis thaliana), the blue-light photoreceptor FKF1 (FLAVIN-BINDING, KELCH REPEAT, F-BOX 1) plays a key role in inducing the expression of FLOWERING LOCUS T (FT), encoding the main florigenic signal in plants, in the late afternoon under long-day conditions (LDs) by forming dimers with FT regulators.
View Article and Find Full Text PDFBackground And Aims: Cancer-associated fibroblasts (CAFs) play key roles in the tumor microenvironment. IgA contributes to inflammation and dismantling antitumor immunity in the human liver. In this study, we aimed to elucidate the effects of the IgA complex on CAFs in Pil Soo Sung the tumor microenvironment of HCC.
View Article and Find Full Text PDFIn contrast to lift-off and shadow mask processes, the back-channel wet etching (BCWE) process is suitable for industrial-scale metallization processes for the large-area and mass production of oxide thin-film transistors (TFTs). However, chemical attacks caused by the corrosive metal etchants used in the BCWE process cause unintended performance degradation of oxide semiconductors, making it difficult to implement oxide TFT circuits through industrial-scale metallization processes. Herein, we propose composition engineering of oxide semiconductors to enhance the chemical durability and electrical stability of oxide semiconductors.
View Article and Find Full Text PDFResistive random-access memory (RRAM) devices have significant advantages for neuromorphic computing but have fatal problems of uncontrollability and abrupt resistive switching behaviors degrading their synaptic performance. In this paper, we propose the electrochemical design of an active CuO layer containing a strategic sublayer of ultrafine Cu nanoparticles (U-Cu NPs) to form uniformly dispersed conducting filaments, which can effectively improve the reliability for analog switching of RRAM-based neuromorphic computing. The electrochemical pulse deposited (EPD) U-Cu NPs are linked to the bottom electrode through a semi-conductive path within the bottom CuO layer, since the EPD is preferentially carried out on the conductive sites.
View Article and Find Full Text PDFIn this paper, we approximate traveling wave solutions via artificial neural networks. Finding traveling wave solutions can be interpreted as a forward-inverse problem that solves a differential equation without knowing the exact speed. In general, we require additional restrictions to ensure the uniqueness of traveling wave solutions that satisfy boundary and initial conditions.
View Article and Find Full Text PDFHypothesis: The introduction of functional interlayers for efficient anchoring of lithium polysulfides has received significant attention worldwide.
Experiments: A facile wet-chemical method was adopted to obtain hollow porous carbon nanospheres (HPCNSs) impregnated with metallic and polar cobalt sulfide (CoS) nanocrystals (abbreviated as "CoS@HPCNS"). The prepared nanocrystals were employed as electrocatalytic interlayers via separator coating for the efficient capture and reutilization of polysulfide species in Li-S batteries.
Echinochrome A (EchA) is a natural bioproduct extracted from sea urchins, and is an active component of the clinical drug, Histochrome. EchA has antioxidant, anti-inflammatory, and antimicrobial effects. However, its effects on diabetic nephropathy (DN) remain poorly understood.
View Article and Find Full Text PDFBackgruound: Diabetes mellitus is one of the most common chronic diseases worldwide, and cardiovascular disease is the leading cause of morbidity and mortality in diabetic patients. Diabetic cardiomyopathy (DCM) is a phenomenon characterized by a deterioration in cardiac function and structure, independent of vascular complications. Among many possible causes, the renin-angiotensin-aldosterone system and angiotensin II have been proposed as major drivers of DCM development.
View Article and Find Full Text PDFBackground: Idiosyncratic drug-induced liver injury (DILI) is caused by the interplay among drugs, their metabolites, and the host immune response. The characterization of infiltrated immune cells in the liver may improve the understanding of the pathogenesis of idiosyncratic DILI. This study investigated the phenotypes and clinical implications of liver-infiltrating immune cells in idiosyncratic DILI.
View Article and Find Full Text PDF