Publications by authors named "Sung Min Seo"

To assess the homeostasis of Ca(2+) metabolism, we have developed a rapid immunosensor for ionic calcium using a membrane chromatographic technique. As calcium-binding protein (CBP) is available for the recognition and undergone conformation change upon Ca(2+) binding, a monoclonal antibody sensitive to the altered structure of CBP has been employed. The sequential binding scheme was mathematically simulated and shown to match with the experimental results.

View Article and Find Full Text PDF

The intramolecular fluorescence self-quenching phenomenon is a major drawback in developing high-performance fluorometric biosensors which use common fluorophores as signal generators. We propose two strategies involving liberation of the fluorescent molecules by means of enzymatic fragmentation of protein or dehybridization of double-stranded DNA. In the former, bovine serum albumin (BSA) was coupled with the fluorescent BODIPY dye (Red BSA), and then immobilized on a solid surface.

View Article and Find Full Text PDF

For detection of high-sensitivity cardiac troponin I (hs-cTnI<0.01ng/mL), signal amplification was attained using a rapid immunosensor with a fluorescently-labeled, polymeric detection antibody. As fluorescent molecules tend to quench when they are less than 10nm apart, a synthetic scheme for the labeled antibody was devised to control the molecular distance and so minimize the quenching effect in a single conjugate unit.

View Article and Find Full Text PDF

To detect high-sensitivity cardiac troponin I (hs-cTnI; <0.01 ng/mL) at points of care, we developed a rapid immunosensor by using horseradish peroxidase polymerized in 20 molecules on average (Poly-HRP) as a tracer conjugated with streptavidin (SA-Poly-HRP). As shown in the conventional system, enhanced sensitivity could be achieved by using a sequential binding scheme for the complex formation to contain the huge molecular tracer.

View Article and Find Full Text PDF

An animal cell-based biosensor was investigated to monitor bacterial contamination in an unattended manner by mimicking the innate immune response. The cells (RAW 264.7 cell line) were first attached onto the solid surfaces of a 96-well microtiter plate and co-incubated in the culture medium with a sample that might contain bacterial contaminants.

View Article and Find Full Text PDF

To attain early diagnosis of acute myocardial infarction (AMI) with enhanced accuracy, continuous immunosensing has been investigated to measure myoglobin concentration in real-time. To this end, a capture antibody showing rapid reaction kinetics was immobilized on the surface of a surface plasmon resonance sensor. Three problems associated with the continuous sensing of myoglobin in human serum needed to be overcome: non-specific binding of the analyte, aggregation of serum components, and drift of the sensor baseline.

View Article and Find Full Text PDF

This Research Article reports self-powered humidity sensors based on graphene oxide (GO) and poly(sodium 4-styrenesulfonate) (PSS)-intercalated GO composite films used as the humidity-responsive dielectrics. A hydrophilic and electrically-insulating PSS polymer was used as an intercalant between the individual GO platelets to enhance the water permeation characteristics. Capacitive-type humidity sensors fabricated by forming metal electrodes on both sides of the GO and GO-PSS films were installed into the charge pumping system, which can produce a voltage output as a response to humidity sensing.

View Article and Find Full Text PDF

We introduce a simulation method for the biosensor environment which treats the semiconductor and the electrolyte region together, using the well-established semiconductor 3D TCAD simulator tool. Using this simulation method, we conduct electrostatic simulations of SiNW biosensors with a more realistic target charge model where the target is described as a charged cube, randomly located across the nanowire surface, and analyze the Coulomb effect on the SiNW FET according to the position and distribution of the target charges. The simulation results show the considerable variation in the SiNW current according to the bound target positions, and also the dependence of conductance modulation on the polarity of target charges.

View Article and Find Full Text PDF

In this study, rapidly reversible antibodies were produced and the binding kinetics, stability, and utility as an analytical binder were evaluated. The number of times the animals were immunized with the antigen (myoglobin as marker for acute myocardial infarction [AMI]) was limited to two, increasing the chances of producing premature antibodies that rapidly reacted with the binding partner in both association and dissociation. The rate constants were higher than 1×10(6)M(-1)s(-1) and 1×10(-3)s(-1), respectively, and the affinity exceeded 10(8)M(-1).

View Article and Find Full Text PDF

To effectively control diabetes, a method to reliably measure glucose fluctuations in the body over given time periods needs to be developed. Current glucose monitoring systems depend on the substrate decomposition by an enzyme to detect the product; however, the enzyme activity significantly decays over time, which complicates analysis. In this study, we investigated an alternative method of glucose analysis based on antigen-antibody binding, which may be active over an extended period of time.

View Article and Find Full Text PDF

Most immuno-analytical systems employ antibodies that do not readily dissociate upon binding to its partner antigen (i.e., target analyte; α2-macroglobulin as a model) and, thus, either need to be disposed of after one-time use or be reused after binding has been reset.

View Article and Find Full Text PDF

In this study, we constructed a rapid detection system for a foodborne pathogen, Vibrio parahaemolyticus, by using enzyme-linked immunosorbent assay (ELISA)-on-a-chip (EOC) biosensor technology to minimize the risk of infection by the microorganism. The EOC results showed a detection capability of approximately 6.2x10(5) cells per ml, which was significantly higher than that of the conventional rapid test kit.

View Article and Find Full Text PDF

We developed a carbon nanotube (CNT)-based biosensor system-on-a-chip (SoC) for the detection of a neurotransmitter. Here, 64 CNT-based sensors were integrated with silicon-based signal processing circuits in a single chip, which was made possible by combining several technological breakthroughs such as efficient signal processing, uniform CNT networks, and biocompatible functionalization of CNT-based sensors. The chip was utilized to detect glutamate, a neurotransmitter, where ammonia, a byproduct of the enzymatic reaction of glutamate and glutamate oxidase on CNT-based sensors, modulated the conductance signals to the CNT-based sensors.

View Article and Find Full Text PDF

The enhanced analytical performances of immunoassays that employed site-directly immobilized antibodies as the capture binders have been functionally characterized in terms of antigen-antibody complex formation on solid surfaces. Three antibody species specific to cardiac troponin I, immunoglobulin G (IgG), Fab, and F(ab')(2) were site-directly biotinylated within the hinge region and then immobilized via a streptavidin-biotin linkage. The new binders were more efficient capture antibodies in the immunoassays compared to randomly bound IgG, particularly, in the low antibody density range.

View Article and Find Full Text PDF

Immunogold-silver staining (IGSS) was adopted in cross-flow chromatographic analysis in which immunological reactions and silver intensification were sequentially conducted in the vertical and horizontal directions, respectively. Factors controlling the performance, except the silver substrate solution, were optimized to increase the signal-to-background ratio in measurements of cardiac troponin I as a model analyte. In generating the signal, the size of colloidal gold catalyst was critical; the smallest size (5-nm diameter) in the selected range yielded the highest colorimetric signal.

View Article and Find Full Text PDF