Controlling the contact properties of a copper (Cu) electrode is an important process for improving the performance of an amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistor (TFT) for high-speed applications, owing to the low resistance-capacitance product constant of Cu. One of the many challenges in Cu application to a-IGZO is inhibiting high diffusivity, which causes degradation in the performance of a-IGZO TFT by forming electron trap states. A self-assembled monolayer (SAM) can perfectly act as a Cu diffusion barrier (DB) and passivation layer that prevents moisture and oxygen, which can deteriorate the TFT on-off performance.
View Article and Find Full Text PDFMetal oxide thin-film transistors have been continuously researched and mass-produced in the display industry. However, their phototransistors are still in their infancy. In particular, utilizing metal oxide semiconductors as phototransistors is difficult because of the limited light absorption wavelength range and persistent photocurrent (PPC) phenomenon.
View Article and Find Full Text PDF