Publications by authors named "Sung Lim Yu"

Mosquitoes are globally distributed and important vectors for the transmission of many human diseases. Mosquito control is a difficult task and the cost of preventing mosquito-borne diseases is much lower than that for curing the associated diseases. Thus, chemical control remains the most effective tool for mosquito.

View Article and Find Full Text PDF

The xeroderma pigmentosum group G (XPG) gene, encoding an essential element in nucleotide excision repair (NER), has a proliferating cell nuclear antigen-binding domain (PCNA-BD) at its C-terminal region. However, the role of this domain is controversial because its presence does not affect NER. Using yeast RAD2, a homolog of human XPG, we show that Rad2p interacts with PCNA through its PCNA-BD and the PCNA-BD of Rad2p plays a role in UV-induced mutagenesis.

View Article and Find Full Text PDF

Mutations in the human XPG gene cause Cockayne syndrome (CS) and xeroderma pigmentosum (XP). Transcription defects have been suggested as the fundamental cause of CS; however, defining CS as a transcription syndrome is inconclusive. In particular, the function of XPG in transcription has not been clearly demonstrated.

View Article and Find Full Text PDF

Alterations in metabolic pathways are gaining attention as important environmental factors affecting life span, but the determination of specific metabolic pathways and enzymes involved in life span remains largely unexplored. By applying an NMR-based metabolomics approach to a calorie-restricted yeast (Saccharomyces cerevisiae) model, we found that alanine level is inversely correlated with yeast chronological life span. The involvement of the alanine-metabolizing pathway in the life span was tested using a deletion mutant of ALT1, the gene for a key alanine-metabolizing enzyme.

View Article and Find Full Text PDF

Methylophaga aminisulfidivorans MP(T) is a marine methylotrophic bacterium that utilizes C(1) compounds such as methanol as a carbon and energy source. The released electron from oxidation flows through a methanol-oxidizing system (MOX) consisting of a series of electron-transfer proteins encoded by the mox operon. One of the key enzymes in the pathway is methanol dehydrogenase (MDH), which contains the prosthetic group pyrroloquinoline quinone (PQQ) and converts methanol to formaldehyde in the periplasm by transferring two electrons from the oxidation of one methanol molecule to the electron acceptor cytochrome c(L).

View Article and Find Full Text PDF

Mitotic catastrophe provokes endopolyploidy, giant cell formation and, eventually, delayed cell death. Mitotic catastrophe is induced by defective cell cycle checkpoints and by some anticancer drugs, ionizing radiation and microtubule-destabilizing agents. RAD2 is a yeast homologue of XPG, which is a human endonuclease involved in nucleotide excision repair.

View Article and Find Full Text PDF

DR4, a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, is a key element in the extrinsic pathway of TRAIL/TRAIL receptor-related apoptosis that exerts a preferential toxic effect against tumor cells. However, TRAIL and DR4 are expressed in various normal cells, and recent studies indicate that DR4 has a number of non-apoptotic functions. In this study, we evaluated the effects of human DR4 expression in yeast to determine the function of DR4 in normal cells.

View Article and Find Full Text PDF

3-Methyl adenine (3meA), a minor-groove DNA lesion, presents a strong block to synthesis by replicative DNA polymerases (Pols). To elucidate the means by which replication through this DNA lesion is mediated in eukaryotic cells, here we carry out genetic studies in the yeast Saccharomyces cerevisiae treated with the alkylating agent methyl methanesulfonate. From the studies presented here, we infer that replication through the 3meA lesion in yeast cells can be mediated by the action of three Rad6-Rad18-dependent pathways that include translesion synthesis (TLS) by Pol(eta) or -zeta and an Mms2-Ubc13-Rad5-dependent pathway which presumably operates via template switching.

View Article and Find Full Text PDF

DNA polymerase zeta (Polzeta) promotes the mutagenic bypass of DNA lesions in eukaryotes. Genetic studies in Saccharomyces cerevisiae have indicated that relative to the contribution of other pathways, Polzeta makes only a modest contribution to lesion bypass. Intriguingly, however, disruption of the REV3 gene, which encodes the catalytic subunit of Polzeta, causes early embryonic lethality in mice.

View Article and Find Full Text PDF

Abasic (AP) sites represent one of the most frequently formed lesions in DNA. Here, we examine the consequences of the stalling of RNA polymerase II at AP sites in DNA in Saccharomyces cerevisiae. A severe inhibition of transcription occurs in strains that are defective in the removal of AP sites and that also lack the RAD26 gene, a homolog of the human Cockayne syndrome group B (CSB) gene, and, importantly, a dramatic rise in mutagenesis is incurred in such strains.

View Article and Find Full Text PDF

In addition to xeroderma pigmentosum, mutations in the human XPG gene cause early onset Cockayne syndrome (CS). Here, we provide evidence for the involvement of RAD2, the S. cerevisiae counterpart of XPG, in promoting efficient RNA polymerase II transcription.

View Article and Find Full Text PDF

RAD26 in the yeast Saccharomyces cerevisiae is the counterpart of the human Cockayne syndrome group B (CSB) gene. Both RAD26 and CSB act in the preferential repair of UV lesions on the transcribed strand, and in this process, they function together with the components of nucleotide excision repair (NER). Here, we examine the role of RAD26 in the repair of DNA lesions induced upon treatment with the alkylating agent methyl methanesulfonate (MMS).

View Article and Find Full Text PDF