For the widespread adoption of polymer electrolyte membrane fuel cells, it is compelling to investigate the influence of the Pt nanoparticle shapes on the electrocatalytic activity. In this study, a catalyst layer was modeled by incorporating four types of Pt nanoparticles: tetrahedron, cube, octahedron, and truncated octahedron, to investigate the relationship between the shapes of the nanoparticles and their impact on the oxygen transport properties using molecular dynamics simulations. The results of our study reveal that the free volume, which has a substantial impact on the oxygen transport properties, exhibited higher values in the sequence of the tetrahedron, cube, octahedron, and truncated octahedron model.
View Article and Find Full Text PDFTo deepen understanding of diffusion-controlled crosslinking, molecular dynamics (MD) simulations are carried out by taking the diffusion image of 3,3'-diamino diphenyl sulfone (3,3'-DDS) and polyethersulfone (PES) with epoxy resin varying temperatures from 393.15 to 473.15 K over crosslinking conversion of 0-85%.
View Article and Find Full Text PDFEpoxy resin is an of the most widely used adhesives for various applications owing to its outstanding properties. The performance of epoxy systems varies significantly depending on the composition of the base resin and curing agent. However, there are limitations in exploring numerous formulations of epoxy resins to optimize adhesive properties because of the expense and time-consuming nature of the trial-and-error process.
View Article and Find Full Text PDFA multiscale approach involving both density functional theory (DFT) and molecular dynamics (MD) simulations was used to deduce an appropriate binder for Pt/C in the catalyst layers of high-temperature polymer electrolyte membrane fuel cells. The DFT calculations showed that the sulfonic acid (SO) group has higher adsorption energy than the other functional groups of the binders, as indicated by its normalized adsorption area on Pt (- 0.1078 eV/Å) and carbon (- 0.
View Article and Find Full Text PDFRecent interest in polymer electrolyte membranes (PEMs) for fuel cell systems has spurred the development of infiltration technology by which to insert ionomers into mechanically robust reinforcement structures by solution casting in order to produce a cost effective and highly efficient electrolyte. However, the results of the fabrication process often continue to present challenges related to the structural complexity and self-assembly dynamics between the hydrophobic and hydrophilic parts of the constituents which in turn, necessitates additional processing steps and increases production costs. Here, a single-step process is reported for highly compact polymeric composite membranes (PCMs), fabricated using a centrifugal colloidal casting (C3) method.
View Article and Find Full Text PDFMolecular dynamics simulations were used to investigate the solubility and permeability of HO in a self-polishing copolymer (SPC) with two zinc methacrylate (ZMA) contents (Z2: 2 mol% ZMA; Z16: 16 mol% ZMA) and ethyl acrylate, methyl methacrylate, 2-methoxyethyl acrylate, and butyl acrylate as antifouling agents. Water was found to be more soluble in hydrated Z16 than Z2 because ZMA interacts strongly with HO. In contrast, the diffusion coefficient of HO in Z16 is lower than that of Z2 because HO molecules are more constrained in the former due to strong ZMA/HO interactions.
View Article and Find Full Text PDFFollowing early research efforts devoted to achieving excellent sensitivity of electronic skins, recent design schemes for these devices have focused on strategies for transduction of spatially resolved sensing data into straightforward user-adaptive visual signals. Here, a material platform capable of transducing mechanical stimuli into visual readout is presented. The material layer comprises a mixture of an ionic transition metal complex luminophore and an ionic liquid (capable of producing electrochemiluminescence (ECL)) within a thermoplastic polyurethane matrix.
View Article and Find Full Text PDFWe prepared two types of perfluorosulfonic acid (PFSA) ionomers with Aquivion (short side chain) and Nafion (long side chain) on a Pt surface and varied their water contents (2.92 ≤ λ ≤ 13.83) to calculate the solubility and permeability of O in hydrated PFSA ionomers on a Pt surface using full atomistic molecular dynamics (MD) simulations.
View Article and Find Full Text PDFAlthough MgO-Al O is well known as having a spinel structure, the inversion of which occurs by exchange of the trivalent (Al ) and divalent (Mg ) cations, little analytical study of the degree of inversion has been carried out. This study concerns a simple methodology to identify the inversion by solid-state NMR spectroscopy, whereby its correlation with the CO capture capacity of MgO-rich MgO@MgO-Al O spinel structures is verified. Through Al and Mg NMR spectroscopy, temperature-programmed CO desorption, and thermogravimetric analysis, higher inversion is found to occur at low Mg/Al ratios and the inversion is found to decrease as the Mg/Al ratio increases.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2019
We calculated the band structures of a variety of N- and S-doped graphenes in order to understand the effects of the N and S dopants on the graphene electronic structure using density functional theory (DFT). Band-structure analysis revealed energy band upshifting above the Fermi level compared to pristine graphene following doping with three nitrogen atoms around a mono-vacancy defect, which corresponds to p-type nature. On the other hand, the energy bands were increasingly shifted downward below the Fermi level with increasing numbers of S atoms in N/S-co-doped graphene, which results in n-type behavior.
View Article and Find Full Text PDFIn this study, we examined the influence of the dispersion solvent in three dipropylene-glycol/water (DPG/water) mixtures, with DPG contents of 0, 50, and 100 wt%, on ionomer morphology and distribution, using dynamic light scattering (DLS) and molecular-dynamics (MD) simulation techniques. The DLS results reveal that Nafion-ionomer aggregation increases with decreasing DPG content of the solvent. Increasing the proportion of water in the solvent also led to a gradual decrease in the radius of gyration (R) of the Nafion ionomer due to its strong backbone hydrophobicity.
View Article and Find Full Text PDFWith the demands for better performance of polymer electrolyte membrane fuel cells, studies on controlling the distribution of ionomers have recently gained interest. Here, we present a tunable ionomer distribution in the catalyst layer (CL) with dipropylene glycol (DPG) and water mixtures as the ionomer dispersion medium. Dynamic light scattering and molecular dynamics simulation demonstrate that, by increasing the DPG content in the dispersion, the size of the ionomer aggregates in the dispersion is exponentially reduced because of the higher affinity of DPG for Nafion ionomers.
View Article and Find Full Text PDFUltrastable sensing characteristics of the ionic chemiresistor skin (ICS) that is designed by using an intrinsically stretchable thermoplastic polyurethane electrolyte as a volatile organic compound (VOC) sensing channel are described. The hierarchically assembled polymer electrolyte film is observed to be very uniform, transparent, and intrinsically stretchable. Systematic experimental and theoretical studies also reveal that artificial ions are evenly distributed in polyurethane matrix without microscale phase separation, which is essential for implementing high reliability of the ICS devices.
View Article and Find Full Text PDFEutectic mixtures of alkali nitrates are known to increase the sorption capacity and kinetics of MgO-based sorbents. Underlying principles and mechanisms for CO capture on such sorbents have already been established; however, real-time observation of the system was not yet accomplished. In this work, we present the direct-observation of the CO capture phenomenon on a KNO-LiNO eutectic mixture (EM)-promoted MgO sample, denoted as KLM, via in situ transmission electron microscopy (in situ TEM).
View Article and Find Full Text PDF