Publications by authors named "Sung Hwa Yoon"

A series of thalidomide analogues, where the fused benzene ring in the phthalimide moiety was converted into two separated diphenyl rings in maleimide moiety and N-aminoglutarimide moiety was replaced by substituted phenyl moiety, were synthesized and evaluated for their NO inhibitory activities on BV2 cells stimulated with lipopolysaccharide (LPS). Among the synthesized compounds, the dimethylaminophenyl analogue 1s (IC = 7.1 μM) showed significantly higher inhibitory activity than the glutarimide analogue 1a (IC > 50 μM) and suppressed NO production dose-dependently without cytotoxicity.

View Article and Find Full Text PDF

Cognitive decline and memory impairment induced by oxidative brain damage are the critical pathological hallmarks of Alzheimer's disease (AD). Based on the potential neuroprotective effects of AD-1 small molecule, we here explored the possible underlying mechanisms of the protective effect of AD-1 small molecule against scopolamine-induced oxidative stress, neuroinflammation, and neuronal apoptosis. According to our findings, scopolamine administration resulted in increased AChE activity, MDA levels, and decreased antioxidant enzymes, as well as the downregulation of the antioxidant response proteins of Nrf2 and HO-1 expression; however, treatment with AD-1 small molecule mitigated the generation of oxidant factors while restoring the antioxidant enzymes status, in addition to improving antioxidant protein levels.

View Article and Find Full Text PDF

A series of rimonabant analogues, where the N-aminopiperidine moiety was replaced by various amines and an additional carbonyl group, were synthesized and their inhibition of nitric oxide (NO) production was evaluated in lipopolysaccharide (LPS)-induced BV2 microglial cells. Among the synthesized compounds, the morpholine analogue 7y (IC = 4.71 ± 0.

View Article and Find Full Text PDF

A series of salicylic acid analogues of celecoxib where the phenylsulfonamide moiety in the structure of celecoxib is replaced by salicylic acid moiety was synthesized and tested for in vitro cyclooxygenase (COX)-1 and COX-2 enzyme inhibition. Among the series, 5-substituted-2-hydroxy-benzoic acid analogues (7a-7h) generally showed better inhibitory activities on both enzymes than 4-substituted-2-hydroxy-benzoic acid analogues (12a-12h). In particular, the chloro analogue 7f which had the highest inhibitory effect (IC = 0.

View Article and Find Full Text PDF

Based on our previous report that 3-morpholino-1-phenylpropan-1-one 2, one of the fluoxetine's simplified morpholino analogue, inhibited nitric oxide (NO) production, in this paper, various substituted benzene analogues with morpholine hydrochloride of 2 were synthesized and their inhibitory effects on NO production in lipopolysaccharide (LPS)-induced BV2 cells were tested. Among the synthesized compounds, 2-trifluoromethyl analogue 16n (IC = 8.6 μM) showed a significantly higher inhibitory activity than that of the parent compound 2a (IC > 50 μM) and suppressed NO production dose-dependently without cytotoxicity.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammation is one of the key mechanisms involved in acute brain injury and chronic neurodegeneration. This study investigated the inhibitory effects of 2-hydroxy-4-methylbenzoic anhydride (HMA), a novel synthetic derivative of HTB (3-hydroxy-4-trifluoromethylbenzoic acid) on neuroinflammation and underlying mechanisms in activated microglia in vitro and an in vivo mouse model of Parkinson's disease (PD). In vitro studies revealed that HMA significantly inhibited lipopolysaccharide (LPS)-stimulated excessive release of nitric oxide (NO) in a concentration dependent manner.

View Article and Find Full Text PDF

Parkinson's disease (PD) is characterized by the selective loss of nigrostriatal dopamine neurons associated with microglial activation. Inhibition of the inflammatory response elicited by activated microglia could be an effective strategy to alleviate the progression of PD. Here, we synthesized 2-(5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazol-3-yl)-N-(2-hydroxyethyl)-2-oxoacetamide (CDMPO) and studied its protective anti-inflammatory mechanisms following lipopolysaccharide (LPS)-induced neuroinflammation in vitro and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity in vivo.

View Article and Find Full Text PDF

Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have protective properties, which have been attributed to its anti-inflammatory, anti-oxidative, and anti-apoptotic functions. In an effort to develop better derivatives of EP, we previously synthesized DEOPA (N,N-diethyl-2-oxopropanamide, a novel isoster of EP) which has greater neuroprotective effects than EP, probably due to its anti-inflammatory and anti-excitotoxic effects. In the present study, we synthesized 3 DEOPA derivatives, in which its diethylamino group was substituted with diisopropylamino, dipropylamino, or diisobutylamino groups.

View Article and Find Full Text PDF

The overactivity of cannabinoid 1 receptor (CB1R) is associated with obesity and type 2 diabetes. First-generation CB1R antagonists, such as rimonabant, offered therapeutic advantages for the control of obesity and related metabolic abnormalities, but their therapeutic potential was limited by undesirable neuropsychiatric side effects. Here, we evaluated AJ5012 as a novel potent peripheral CB1R antagonist and, using this antagonist, investigated the role of peripheral CB1R on adipose tissue inflammation in obese mouse models.

View Article and Find Full Text PDF

A series of methyl ester of clovamide analogues, where the hydroxyl group of catechol moiety in caffeic acid and L-3,4-dihydroxyphenylalanine (L-dopa) was replaced with various functional groups, were synthesized and their inhibitory effects on nitric oxide (NO) production and inducible NO synthase (iNOS) expression in lipopolysaccharide (LPS)-induced BV2 cells were tested. Among the synthesized compounds, 3,5-ditrifluoromethyl analogue 9l (IC=2.8 µM) exhibited a potency about 26.

View Article and Find Full Text PDF

Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have robust neuroprotective effects via its anti-inflammatory, anti-oxidative, and anti-apoptotic functions. In an effort to develop novel EP derivatives with greater protective potencies than EP, we generated four EP isosteres, among them the neuroprotective potency of N,N-diethyl-2-oxopropanamide (DEOPA), in which the ethoxy group of EP was replaced with diethylamine, was far greater than that of EP. When DEOPA was administered intravenously (5 mg/kg) to rat middle cerebral artery occlusion (MCAO) model at 6 hrs post-surgery, it suppressed infarct formation, ameliorated neurological and sensory/motor deficits, and inhibited microglial activation and neutrophil infiltrations in the postischemic brain more effectively than EP.

View Article and Find Full Text PDF

2-Hydroxy-4-trifluoromethylbenzoic acid (HTB) is a metabolite of triflusal (TF), and has been reported to exert anti-inflammatory effect. In this study, the authors investigated whether HTB has a neuroprotective effect against ischemic brain injuries. We showed that intravenous administration of HTB (5mg/kg) 30min before or 1, 3, or 6h after middle cerebral artery occlusion (MCAO) reduced brain infarct to 10.

View Article and Find Full Text PDF

Postischemic brain damage in stroke is proceded with complicated pathological events, and so multimodal drug treatments may offer better therapeutic means for improving clinical outcomes. Here, we report robust neuroprotective effects of a novel compound, 2-((2-oxopropanoyl)oxy)-4-(trifluoromethyl)benzoic acid (OPTBA), a 2-hydroxy-4-trifluoromethyl benzoic acid (HTB, a metabolite of triflusal)-pyruvate ester. Intravenous administration of OPTBA (5 mg/kg) 3 or 6 h after middle cerebral artery occlusion (MCAO) in Sprague-Dawley rats reduced infarct volumes to 38.

View Article and Find Full Text PDF

Axon regeneration after injury in the central nervous system is hampered in part because if an age-dependent decline in the intrinsic axon growth potential, and one of the strategies to stimulate axon growth in injured neurons involves pharmacological manipulation of implicated signaling pathways. Here we report phenotypic cell-based screen of chemical libraries and structure-activity-guided optimization that resulted in the identification of compound 7p which promotes neurite outgrowth of cultured primary neurons derived from the hippocampus, cerebral cortex, and retina. In an animal model of optic nerve injury, compound 7p was shown to induce growth of GAP-43 positive axons, indicating that the in vitro neurite outgrowth activity of compound 7p translates into stimulation of axon regeneration in vivo.

View Article and Find Full Text PDF

Ethyl pyruvate (EP) is a simple aliphatic ester of pyruvic acid and has been shown to have robust protective effect in various pathological conditions. A variety of mechanisms have been reported to underlie the protective effects of EP, which include anti-inflammatory, anti-oxidative, and anti-apoptotic functions. Recently, we reported that EP suppressed high mobility group box 1 (HMGB1) release from primary microglial cells via direct Ca(2+) chelation.

View Article and Find Full Text PDF

The selective loss of dopaminergic neurons in Parkinson's disease (PD) is associated with microglial activation. Therefore, the importance of early therapeutic intervention to inhibit microglial activation would be an effective strategy to alleviate the progression of PD. α-Asarone, an active compound found in Araceae and Annonaceae plant species has been used to improve various disease conditions including central nervous system disorders.

View Article and Find Full Text PDF

Neuroinflammation is one of the critical pathological mechanisms influencing various neurodegenerative disorders. Most of the neurodegenerative diseases involve over-activation of microglial cells contributing to the demise of neurons. The objective of the current study is to evaluate the anti-inflammatory effect of novel synthetic clovamide derivative on the suppression of microglial activation in an in vitro and in vivo model of neuroinflammation.

View Article and Find Full Text PDF

Microglia-induced neuroinflammation is an important pathological mechanism influencing various neurodegenerative disorders. Excess activation of microglia produces a myriad of proinflammatory mediators that decimate neurons. Hence, therapeutic strategies aimed to suppress the activation of microglia might lead to advancements in the treatment of neurodegenerative diseases.

View Article and Find Full Text PDF

Activated microglia cells are well recognized as mediators of neuroinflammation, as they release nitric oxide and pro-inflammatory cytokines in various neuroinflammatory diseases. Thus, suppressing microglial activation may alleviate neuroinflammatory and neurodegenerative processes. In the present study, we synthesized and investigated the anti-neuroinflammatory effect of a novel HTB (2-hydroxy-4-trifuoromethylbenzoic acid) derivative in lipopolysaccharide (LPS)-stimulated microglial cells.

View Article and Find Full Text PDF

Cerebral ischemia leads to brain injury via a complex series of pathophysiological events, and therefore, multi-drug treatments or multi-targeting drug treatments provide attractive options with respect to limiting brain damage. Previously, we reported that a novel multi-functional compound oxopropanoyloxy benzoic acid (OBA-09, a simple ester of pyruvate and salicylic acid) affords robust neuroprotective effects in the postischemic rat brain. OBA-09 exhibited anti-oxidative effects that appeared to be executed by OBA-09 and by the salicylic acid afforded by hydrolysis.

View Article and Find Full Text PDF

Microglial-mediated neuroinflammation has recently been implicated as one of the important mechanisms responsible for the progression of neurodegenerative diseases. Activated microglia cells produce various neurotoxic factors that are harmful to neurons. Therefore, suppression of the inflammatory response elicited by activated microglia is considered a potential therapeutic target for neurodegenerative diseases.

View Article and Find Full Text PDF

In order to measure the levels of serotonin (5-hydroxyltryptamine, 5-HT), dopamine (DA), 3,4-hydroxyphenylacetic acid (DOPAC), 3-methoxytyramine (3-MT) and homovanillic acid (HVA) simultaneously, an effective derivatization method followed by high-performance liquid chromatography (HPLC) coupled to electrochemical ionization mass spectrometry was used. The derivatization reaction of biological samples with ethyl chloroformate occurred rapidly at room temperature in aqueous conditions, and the resulting derivatives were isocratically separated with good selectivity using a C18 reversed-phase column within 30 min. The study results showed that the new derivatization procedure offers an excellent means of simultaneous determination of 5-HT, DA and their metabolites in mouse brain homogenates, which are important in a number of physiological and behavioral functions.

View Article and Find Full Text PDF

Diclofenac has been of environmental concern due to the potential harmful effects on non-target organisms at environmentally relevant concentrations. In this study, we evaluated the transformation kinetics of diclofenac and its two major metabolites in two laboratory-scale experiments: the transformation of diclofenac in the presence of rat liver S9 fraction with co-factors, and the transformation of diclofenac, 4'-hydroxy-diclofenac and diclofenac β-O-acyl glucuronide in the inoculum used for the OECD 301C ready-biodegradability test. 4'-Hydroxy-diclofenac was identified as the major phase I metabolite and diclofenac β-O-acyl glucuronide was identified as the major phase II metabolite in the S9 assay.

View Article and Find Full Text PDF

This study examined whether the cannabinoid receptor type 1 (CB(1)) receptor contributes to the survival of nigrostriatal dopaminergic (DA) neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease. MPTP induced significant loss of nigrostriatal DA neurons and microglial activation in the substantia nigra (SN), visualized with tyrosine hydroxylase or macrophage Ag complex-1 immunohistochemistry. Real-time PCR, ELISA, Western blotting, and immunohistochemistry disclosed upregulation of proinflammatory cytokines, activation of microglial NADPH oxidase, and subsequent reactive oxygen species production and oxidative damage of DNA and proteins in MPTP-treated SN, resulting in degeneration of DA neurons.

View Article and Find Full Text PDF