Publications by authors named "Sung Hoon Baik"

NLRP3 inflammasome activation is a highly regulated process for controlling secretion of the potent inflammatory cytokines IL-1β and IL-18 that are essential during bacterial infection, sterile inflammation, and disease, including colitis, diabetes, Alzheimer's disease, and atherosclerosis. Diverse stimuli activate the NLRP3 inflammasome, and unifying upstream signals has been challenging to identify. Here, we report that a common upstream step in NLRP3 inflammasome activation is the dissociation of the glycolytic enzyme hexokinase 2 from the voltage-dependent anion channel (VDAC) in the outer membrane of mitochondria.

View Article and Find Full Text PDF

Neuroinflammatory roles of central innate immunity in brain parenchyma are well-regarded in the progression of neurodegenerative disorders including Alzheimer's disease (AD), however, the roles of peripheral immunity in central nervous system (CNS) diseases are less clear. Here, we created a microfluidic environment of human AD brains: microglial neuroinflammation induced by soluble amyloid-beta (Abeta), a signature molecule in AD and employed the environment to investigate the roles of neutrophils through the central-peripheral innate immunity crosstalk. We observed that soluble Abeta-activated human microglial cells produced chemoattractants for neutrophils including IL6, IL8, CCL2, CCL3/4, CCL5 and consequently induced reliable recruitment of human neutrophils.

View Article and Find Full Text PDF

Reactive microglia are a major pathological feature of Alzheimer's disease (AD). However, the exact role of microglia in AD pathogenesis is still unclear. Here, using metabolic profiling, we found that exposure to amyloid-β triggers acute microglial inflammation accompanied by metabolic reprogramming from oxidative phosphorylation to glycolysis.

View Article and Find Full Text PDF

Increased levels of total tau (t-tau) and hyperphosphorylated tau (p-tau) proteins in the cerebrospinal fluid of Alzheimer's disease (AD) patients are well documented and strongly correlate with AD pathology. Recent studies have further shown that human tau can be released into the extracellular space and transferred to nascent neurons. However, because the tau protein has no signal peptide identity, the mechanisms underlying its secretion remain poorly understood.

View Article and Find Full Text PDF

Transplantation of stem cells into the brain attenuates functional deficits in the central nervous system via cell replacement, the release of specific neurotransmitters, and the production of neurotrophic factors. To identify patient-specific and safe stem cells for treating Alzheimer's disease (AD), we generated induced pluripotent stem cells (iPSCs) derived from mouse skin fibroblasts by treating protein extracts of embryonic stem cells. These reprogrammed cells were pluripotent but nontumorigenic.

View Article and Find Full Text PDF

Monoamine oxidases (MAOs) play an important role in Alzheimer's disease (AD) pathology. We report comonitoring of MAO activity and amyloid-β (Aβ) plaques dependent on the aging of live mice with AD, using a two-photon fluorescence probe. The probe under the catalytic action of MAO produces a dipolar fluorophore that senses Aβ plaques, a general AD biomarker, enabling us to comonitor the enzyme activity and the progress of AD indicated by Aβ plaques.

View Article and Find Full Text PDF

Pathological hallmarks of Alzheimer's disease (AD) include extracellularly accumulated amyloid β (Aβ) plaques and intracellular neurofibrillary tangles in the brain. Activated microglia, brain-resident macrophages, are also found surrounding Aβ plaques. The study of the brain of AD mouse models revealed that Aβ plaque formation is completed by the consolidation of newly generated plaque clusters in vicinity of existed plaques.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is composed of brain capillary endothelial cells and has an important role in maintaining homeostasis of the brain separating the blood from the parenchyma of the central nervous system (CNS). It is widely known that disruption of the BBB occurs in various neurodegenerative diseases, including Alzheimer's disease (AD). Annexin A1 (ANXA1), an anti-inflammatory messenger, is expressed in brain endothelial cells and regulates the BBB integrity.

View Article and Find Full Text PDF

The formation of beta amyloid (Aβ) plaques in specific brain regions is one of the early pathological hallmarks of Alzheimer's disease (AD). To enable the early detection of AD and related applications, a method for real-time, clear 3D visualization of Aβ plaques is highly desirable. Two-photon microscopy (TPM) which utilizes two near-infrared photons is an attractive tool for such applications.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia; however, at the present time there is no disease-modifying drug for AD. There is increasing evidence supporting the role of lipid changes in the process of normal cognitive aging and in the etiology of age-related neurodegenerative diseases. AD is characterized by the presence of intraneuronal protein clusters and extracellular aggregates of β-amyloid (Aβ).

View Article and Find Full Text PDF

In response to brain injury, microglia rapidly extend processes that isolate lesion sites and protect the brain from further injury. Here we report that microglia carrying a pathogenic mutation in the Parkinson's disease (PD)-associated gene, G2019S-LRRK2 (GS-Tg microglia), show retarded ADP-induced motility and delayed isolation of injury, compared with non-Tg microglia. Conversely, LRRK2 knockdown microglia are highly motile compared with control cells.

View Article and Find Full Text PDF

Fluorescence imaging of tissues offer an essential means for studying biological systems. Autofluorescence becomes a serious issue in tissue imaging under excitation at UV-vis wavelengths where biological molecules compete with the fluorophore. To address this critical issue, a novel class of fluorophores that can be excited at ∼900 nm under two-photon excitation conditions and emits in the red wavelength region (≥600 nm) has been disclosed.

View Article and Find Full Text PDF

Femtosecond time-resolved signals often display oscillations arising from the nuclear and electronic wave packet motions. Fourier power spectrum is generally used to retrieve the frequency spectrum. We have shown by numerical simulations and coherent phonon spectrum of single walled carbon nanotubes (SWCNT) that the Fourier power spectrum may not be appropriate to obtain the spectrum, when the peaks overlap with varying phases.

View Article and Find Full Text PDF

Using a macroscopic ensemble of highly enriched (6,5) single-wall carbon nanotubes, combined with high signal-to-noise ratio and time-dependent differential transmission spectroscopy, we have generated vibrational modes in an ultrawide spectral range (10-3000 cm(-1)). A total of 14 modes were clearly resolved and identified, including fundamental modes of A, E1, and E2 symmetries and their combinational modes involving two and three phonons. Through comparison with continuous wave Raman spectra as well as calculations based on an extended tight-binding model, we were able to identify all the observed peaks and determine the frequencies of the individual and combined modes.

View Article and Find Full Text PDF

Immune responses in the brain are thought to play a role in disorders of the central nervous system, but an understanding of the process underlying how immune cells get into the brain and their fate there remains unclear. In this study, we used a 2-photon microscopy to reveal that neutrophils infiltrate brain and migrate toward amyloid plaques in a mouse model of Alzheimer's disease. These findings suggest a new molecular process underlying the pathophysiology of Alzheimer's disease.

View Article and Find Full Text PDF

We report a small molecule two-photon probe (SAD1) that shows a significant TP action cross section (170 GM), binds to Aβ plaques specifically, readily enters the brain through the BBB, and can directly 3D monitor the individual Aβ plaque in living transgenic mice at more than 380 μm depths.

View Article and Find Full Text PDF

One of the major hallmarks of Alzheimer's disease (AD) is the extracellular deposition of amyloid-β (Aβ) as senile plaques in specific brain regions. Clearly, an understanding of the cellular processes underlying Aβ deposition is a crucial issue in the field of AD research. Recent studies have found that accumulation of intraneuronal Aβ (iAβ) is associated with synaptic deficits, neuronal death, and cognitive dysfunction in AD patients.

View Article and Find Full Text PDF

Free induction decay of the coherent electronic transition and coherent phonon oscillations of the radial breathing mode in single-walled carbon nanotubes are simultaneously observed via direct resonant excitation of the lowest E(11) optical transition in the near-infrared region from 0.939 to 1.1 eV.

View Article and Find Full Text PDF

We have observed large-amplitude coherent phonon oscillations of radial breathing modes (RBMs) in single-walled carbon nanotubes excited through the lowest-energy (E(11)) interband transitions. In contrast to the previously studied coherent phonons excited through higher-energy (E(22)) transitions, these RBMs show comparable intensities between (n-m) mod 3 = +1 and -1 nanotubes. We also find the novel observation of RBMs excited over an excitation range of approximately 300 meV above the E(11) transition, which we attribute to possible resonance with phonon sidebands of the lowest optical transition, arising from strong exciton-phonon coupling.

View Article and Find Full Text PDF