Herein, a heterojunction structure integrating p-type tellurium (Te) and n-type aluminum-doped indium-zinc-tin oxide (Al:IZTO) is shown to precisely modulate the threshold voltage () of the oxide thin-film transistor (TFT). The proposed architecture integrates Te as an electron-blocking layer and Al:IZTO as a charge-carrier transporting layer, thereby enabling controlled electron injection. The effects of incorporating the Te layer onto Al:IZTO are investigated, with a focus on X-ray photoelectron spectroscopy (XPS) analysis, in order to explain the behavior of oxygen vacancies and to depict the energy band structure configurations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
p-type thin-film transistors (pTFTs) have proven to be a significant impediment to advancing electronics beyond traditional Si-based technology. A recent study suggests that a thin and highly crystalline Te layer shows promise as a channel for high-performance pTFTs. However, achieving this still requires specific conditions, such as a cryogenic growth temperature and an extremely thin channel thickness on the order of a few nanometers.
View Article and Find Full Text PDFIn order to overcome the bottleneck between the central processor unit and memory as well as the issue of energy consumption, computing-in-memory (CIM) is becoming more popular as an alternative to the traditional von Neumann structure. However, as artificial intelligence advances, the networks require CIM devices to store billions of parameters in order to handle huge data traffic demands. Monolithic three-dimensional (M3D) stacked ferroelectric thin-film transistors (FeTFTs) are one of the promising techniques for realizing high-density CIM devices that can store billions of parameters.
View Article and Find Full Text PDFWe fabricated amorphous InGaZnO thin film transistors (a-IGZO TFTs) with aluminum oxide (AlO) as a gate insulator grown through atomic layer deposition (ALD) method at different deposition temperatures ( ). The AlO gate insulator with a low exhibited a high amount of hydrogen in the film, and the relationship between the hydrogen content and the electrical properties of the TFTs was investigated. The device with the AlO gate insulator having a high H content showed much better transfer parameters and reliabilities than the low H sample.
View Article and Find Full Text PDFReliability issues associated with driving metal-oxide semiconductor thin film transistors (TFTs), which may arise from various sequential drain/gate pulse voltage stresses and/or certain environmental parameters, have not received much attention due to the competing desire to characterise the shift in the transistor characteristics caused by gate charging. In this paper, we report on the reliability of these devices under AC bias stress conditions because this is one of the major sources of failure. In our analysis, we investigate the effects of the driving frequency, pulse shape, strength of the applied electric field, and channel current, and the results are compared with those from a general reliability test in which the devices were subjected to negative/positive bias, temperature, and illumination stresses, which are known to cause the most stress to oxide semiconductor TFTs.
View Article and Find Full Text PDFActive matrix organic light-emitting diodes (AMOLEDs) are considered to be a core component of next-generation display technology, which can be used for wearable and flexible devices. Reliable thin-film transistors (TFTs) with high mobility are required to drive AMOLEDs. Recently, amorphous oxide TFTs, due to their high mobility, have been considered as excellent substitutes for driving AMOLEDs.
View Article and Find Full Text PDFWe investigated the hydrogen bonding structures and proton transfer for the hydration complexes of alizarin (Az) produced in a supersonic jet using fluorescence excitation (FE), dispersed laser induced fluorescence (LIF), visible-visible hole burning (HB), and fluorescence detected infrared (FDIR) spectroscopy. The FDIR spectrum of bare Az with two O-H groups exhibits two vibrational bands at 3092 and 3579 cm(-1), which, respectively, correspond to the stretching vibration of O1-H1 that forms a strong intramolecular hydrogen bond with the C9=O9 carbonyl group and the stretching vibration of O2-H2 that is weakly hydrogen-bonded to O1-H1. For the 1:1 hydration complex Az(H(2)O)(1), we identified three conformers.
View Article and Find Full Text PDFThe structures of hydrated 1-hydroxyanthraquinone complexes (1-HAQ), 1-HAQ(H2O)n=1,2, with intramolecular and intermolecular hydrogen bonding interactions were studied using laser spectroscopic methods such as laser induced fluorescence, fluorescence-detected infrared, infrared-visible hole burning, and visible-visible hole burning spectroscopy. In the 1:1 complex 1-HAQ(H2O)1, the water binds to the free carbonyl group of 1-HAQ not associated with intramolecular hydrogen bond. The second water in the 1:2 complex, 1-HAQ(H2O)2, binds to the first water of the 1:1 complex rather than other hydrogen bonding sites of 1-HAQ.
View Article and Find Full Text PDFWe carried out laser induced fluorescence and resonance enhanced two-color two-photon ionization spectroscopy of jet-cooled 1-hydroxy-9,10-anthraquinone (1-HAQ). The 0-0 band transition to the lowest electronically excited state was found to be at 461.98 nm (21,646 cm(-1)).
View Article and Find Full Text PDF