Enhanced technologies of the future are gradually improving the digital landscape. Internet of Things (IoT) technology is an advanced technique that is quickly increasing owing to the development of a network of organized online devices. In today's digital era, the IoT is considered one of the most robust technologies.
View Article and Find Full Text PDFHierarchical binder-free NiCoO@CuS composite electrodes have been successfully fabricated on a nickel foam surface using a facile hydrothermal method and directly used as a battery-type electrode material for supercapacitor applications. The surface morphological studies reveal that the composite electrode exhibited porous NiCoO nanograss-like structures with CuS nanostructures. The surface area of the composite is significantly enhanced (91.
View Article and Find Full Text PDFThe application of environmentally friendly and sustainable catalysts requires efficient and safe preparation methods using cheap and renewable materials. Although many metal nanoparticles (NPs) have low colloidal stability, they are still very effective as catalysts. Using a straightforward method, we developed a bacterial cellulose-glycol chitosan-silver (BC-GCS-Ag) nanocomposite, by introducing both AgNPs and self-crosslinked GCS within the BC network.
View Article and Find Full Text PDFZinc oxide nanostructures (ZnO NS) were fabricated in situ within a ternary hydrogel system composed of carboxymethyl cellulose-agarose-polyvinylpyrrolidone (CAP@ZnO TNCHs) by a one-pot method employing moist-heat solution casting. The percentages of CMC and ZnO NS were varied in the CAP hydrogel films and then they were investigated by different techniques, such as ATR/FTIR, TGA, XRD, XPS, and FE-SEM analysis. Furthermore, the mechanical properties, hydrophilicity, swelling, porosity, and antibacterial activity of the CAP@ZnO TNCHs were studied.
View Article and Find Full Text PDFIn this study, we developed hydrogels using polyvinyl alcohol (PVA), vanillin (V), and a fungus-derived carboxymethyl chitosan (FC) using a freeze-thaw-based method. These hydrogels were strengthened by bonding, including Schiff's base bonding between V and FC and hydrogen bonding between PVA, FC, and V. The physiological properties of these PFCV hydrogels were characterized by FTIR, TGA, compressive mechanical testing, and rheology and water contact angle measurements.
View Article and Find Full Text PDFThe treatment of various organic pollutants from industrial wastewater using bio-based materials has gained significant attention owing to their excellent properties such as low-cost, eco-friendly, non-toxic, and biodegradability. In this perspective, casein (Cn), a protein-based biopolymer, was extracted from the cow milk as a low-cost adsorbent, and the adsorption performances were determined for the pristine Cn. The adsorbent was employed for the removal of two different classes of targeted pollutant anionic dyes such as Congo red (CR), Eriochrome Black T (EBT), Eosin Y (EY), and pharmaceutical waste i.
View Article and Find Full Text PDFAddressing major bone injuries is a challenge in bone regeneration, necessitating innovative 3D hydrogel-based therapeutic approaches to enhance scaffold properties for better bioactivity. Bacterial cellulose (BC) is an excellent scaffold for bone tissue engineering due to its biocompatibility, high porosity, substantial surface area, and remarkable mechanical strength. However, its practical application is limited due to a lack of inherent osteogenic activity and biomineralization ability.
View Article and Find Full Text PDFSince the initial MXenes were discovered in 2011, several MXene compositions constructed using combinations of various transition metals have been developed. MXenes are ideal candidates for different applications in energy conversion and storage, because of their unique and interesting characteristics, which included good electrical conductivity, hydrophilicity, and simplicity of large-scale synthesis. Herein, we study the current developments in two-dimensional (2D) MXene nanosheets for energy storage and conversion technologies.
View Article and Find Full Text PDFConductive agro-industrial wastes as accelerants in the anaerobic digestion (AD) of organic waste is a good technique for developing a rural circular economy, such as producing bioenergy and biofertilizer. This study disclosed the a role of sugar cane bagasse ash (SCBA) in enhancing the bioenergy (biogas) yield and digestate fertility via anaerobic co-digestion (AcoD) of buffalo dung (BD) and vegetable residue (VR) under mesophilic conditions (37 ᴼC). Firstly, an optimal BD/VR ratio (1:3) was determined based on biogas yield by introducing five different BD/VR ratios (1:0, 3:1, 1:1, 1:3, and 0:1) into AcoD systems.
View Article and Find Full Text PDFThe use of metal nanoparticles (M-NPs) in cancer therapy has gained significant consideration owing to their exceptional physical and chemical features. However, due to the limitations, such as specificity and toxicity towards healthy cells, their application in clinical translations has been restricted. Hyaluronic acid (HA), a biocompatible and biodegradable polysaccharide, has been extensively used as a targeting moiety, due to its ability to selectively bind to the CD44 receptors overexpressed on cancer cells.
View Article and Find Full Text PDFIn this study, we developed biocompatible, fungus-derived carboxymethyl chitosan (FCMCS)-reduced graphene oxide (rGO)-polydopamine (PDA)-polyacrylamide (PAM) (FC-rGO-PDA) hydrogels with excellent antibacterial, hemostatic, and tissue adhesive properties for wound healing applications. FC-rGO-PDA hydrogels were prepared by the alkali-induced polymerization of DA followed by the incorporation of GO and its reduction during the polymerization AM to form a homogeneously dispersed PAM network structure in FCMCS solution. The formation of rGO was verified using UV-Vis spectra.
View Article and Find Full Text PDFIn this work, we synthesized doxorubicin-loaded fungal-carboxymethyl chitosan (FC) functionalized polydopamine (Dox@FCPDA) nanoparticles for improved anticancer activity via photothermal drug release. The photothermal properties revealed that the FCPDA nanoparticles with a concentration of 400 µg/mL produced a temperature of about 61.1 °C at 2 W/cm laser illumination, which is more beneficial for cancer cells.
View Article and Find Full Text PDFBacterial cellulose (BC) produced by is a suitable polymeric fiber network for wound-dressing purposes, but its lack of antibacterial properties limits it from healing bacterial wounds. We developed hydrogels by impregnating fungal-derived carboxymethyl chitosan to BC fiber networks using a simple solution immersion method. The CMCS-BC hydrogels were characterized using various characterization techniques such as XRD, FTIR, water contact angle measurements, TGA, and SEM to know the physiochemical properties.
View Article and Find Full Text PDFOver the past few decades, hydrogel systems using natural polymers have been expansively employed in drug delivery applications. Among the various reported biopolymer-based hydrogel drug delivery systems, pectin (Pec) is an exceptional natural polymer due to its unique functionalities and excellent properties such as biocompatibility, biodegradability, low-cost, and simple gelling capability, which has received considerable interest in the drug delivery fields. Since there is an increasing need for biomaterials with unique properties for drug delivery applications, in this review, hydrogels fabricated from natural pectin polymers were thoroughly investigated.
View Article and Find Full Text PDFIn this work, doxorubicin (Dox)-encapsulated poly(vinyl caprolactam) (PVCL)-based three-dimensional nanogel networks were developed and were crosslinked with disulfide linkages. The nanogels degrade rapidly to low molecular weight chains in the presence of the typical intracellular concentration of glutathione. Doxorubicin (Dox) was successfully encapsulated into these nanogels.
View Article and Find Full Text PDFMultifunctional blend membranes composed of poly (vinyl alcohol) (PVA) and fungal mushroom-derived carboxymethyl chitosan (F-CMCS) were produced using a simple solution casting technique for wound dressing applications. The structural interactions between PVA and F-CMCS were confirmed by Fourier infrared spectroscopy. The crystallinity of the membranes was examined by X-ray diffraction.
View Article and Find Full Text PDFThe merit of this investigation is that simple and effective bio-sorbents based on plant materials with high sorption capacities, are developed for the simultaneous removal of the toxic Pb and Cd at neutral or nearly neutral pHs. These sorbents are successful in water remediation of Pb and Cd ions from real effluents from industries. These findings have great significance as the identified bio-sorbents are simple, effective and renewable in extracting highly toxic lead and cadmium ions from the effluents from industries or polluted water.
View Article and Find Full Text PDFContemp Clin Dent
December 2020
Background: Elimination of infection and prevention of reinfection should be the main goal in the treatment of apical periodontitis. The most challenging part of endodontics is the complete disinfection of root canal system. Herbal alternatives have emerged as the more biofriendly approach in root canal irrigation and disinfection.
View Article and Find Full Text PDFIn this study, non-animal mushroom carboxymethyl chitosan (NAM-CMCS) was used as a natural polymer stabilizing agent in the ultrasonic preparation of a ZnO nanocomposite at ambient laboratory temperatures. The formation and morphology of the ZnO nanoparticles were investigated by applying FTIR, XRD, XPS, FE-SEM, and DLS techniques. The FTIR and XPS spectra confirmed the presence of NAM-CMCS functional groups and ZnO in the nanoparticles.
View Article and Find Full Text PDFBackground: Residual root dentin thickness (RDT) in endodontically treated teeth is a major factor that is responsible for longevity of treated tooth.
Aims And Objectives: To evaluate and compare the amount of RDT during endodontic treatment using manual K-files and rotary Mtwo, ProTaper Next, and Hero shaper instruments.
Settings And Design: Anin vitro study was carried out on a sample of 100 freshly extracted human single straight rooted mandibular first premolar teeth.
Bone tissue engineering aims to design mechanically improved macroporous hydrogels with fibrous topologies using polysaccharides that can provide an appropriate microenvironment in bone defects in order to enhance bone regeneration similar to the native bone extracellular matrix. Herein, we developed hydrogels by intercalation of chitosan (CS) and sodium alginate (SA)-based polyelectrolyte complexes (PECs) (in situ formation using glucuronic acid delta-galactone as an acidifying agent (GDL)) within the poly(acrylamide) (PAM)-crosslinked network (PEC-PAM) during free radical polymerization. The structure and interactions of PEC-PAM were confirmed by FTIR and XRD experiments.
View Article and Find Full Text PDFThe combination of multiple physiological (swelling, porosity, mechanical, and biodegradation) and biological (cell/tissue-adhesive, cell proliferation, and hemostatic) properties on a single hydrogel has great potential for skin tissue engineering. Adhesive hydrogels based on polydopamine (PDA) have become the most popular in the biomedical field; however, integrating multiple properties on a single adhesive hydrogel remains a challenge. Here, inspired by the chemistry of mussels, we developed PDA-sodium alginate-polyacrylamide (PDA-SA-PAM)-based hydrogels with multiple physiological and biological properties for skin tissue engineering applications.
View Article and Find Full Text PDFIn this study, hyaluronic acid-zinc oxide ((HA-ZnO) nanocomposite hydrogels (NCHs) were prepared by one-pot synthesis method. In particular, one-pot process facilitated the rapid formation of a network structure of HA hydrogel with 1,4-butanediol diglycidyl ether (BDDE) crosslinker followed by the formation of ZnO nanobelt-like structures, which was confirmed using H NMR, FTIR, XRD, and SEM techniques. The rheology, swelling, and biodegradable behavior were assessed.
View Article and Find Full Text PDFIn this work, we propose biofriendly in-situ preparation method of Au NPs (hexagonal and rod-shape structures) in the lumen as well as the surface cage of biocompatible halloysite nanotubes (HNTs) using curcumin (CUR) as anticancer drug and subsequently coating with bio-adhesive chitosan (CS) as a polysaccharide. The formation of Au NPs and their interactions with CUR and CS exist in the HNTs has been characterized by FTIR, XRD, XPS, STEM techniques. Interestingly, Au NPs showed longitudinal plasmon resonance bands at 760 and 980 nm that indicate the near-infrared (NIR) responsive property of hybrid nanoparticles.
View Article and Find Full Text PDF