Proc Natl Acad Sci U S A
August 2018
The transient receptor potential ion channel subfamily M, member 7 (TRPM7), is a ubiquitously expressed protein that is required for mouse embryonic development. TRPM7 contains both an ion channel and an α-kinase. The channel domain comprises a nonselective cation channel with notable permeability to Mg and Zn Here, we report the closed state structures of the mouse TRPM7 channel domain in three different ionic conditions to overall resolutions of 3.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2017
TRPM7 (transient receptor potential cation channel subfamily M member 7) regulates gene expression and stress-induced cytotoxicity and is required in early embryogenesis through organ development. Here, we show that the majority of TRPM7 is localized in abundant intracellular vesicles. These vesicles (M7Vs) are distinct from endosomes, lysosomes, and other familiar vesicles or organelles.
View Article and Find Full Text PDFDuring the mitochondrial permeability transition, a large channel in the inner mitochondrial membrane opens, leading to the loss of multiple mitochondrial solutes and cell death. Key triggers include excessive reactive oxygen species and mitochondrial calcium overload, factors implicated in neuronal and cardiac pathophysiology. Examining the differential behavior of mitochondrial Ca(2+) overload in Drosophila versus human cells allowed us to identify a gene, MCUR1, which, when expressed in Drosophila cells, conferred permeability transition sensitive to electrophoretic Ca(2+) uptake.
View Article and Find Full Text PDFHedgehog (Hh) signaling regulates the growth of malignant gliomas by a ligand-dependent mechanism. The cellular source of Sonic Hh ligand and mode of signaling have not been clearly defined due to the lack of methods to definitively identify neoplastic cells in glioma specimens. Using an antibody specific for mutant isocitrate dehydrogenase protein expression to identify glioma cells, we demonstrate that Sonic Hh ligand and the pathway components Patched1 (PTCH1) and GLI1 are expressed in neoplastic cells.
View Article and Find Full Text PDFThe Hedgehog (Hh) pathway regulates the growth of a subset of adult gliomas and better definition of Hh-responsive subtypes could enhance the clinical utility of monitoring and targeting this pathway in patients. Somatic mutations of the isocitrate dehydrogenase (IDH) genes occur frequently in WHO grades II and III gliomas and WHO grade IV secondary glioblastomas. Hh pathway activation in WHO grades II and III gliomas suggests that it might also be operational in glioblastomas that developed from lower-grade lesions.
View Article and Find Full Text PDFCalcium/calmodulin-dependent kinase II (CaMKII) facilitates L-type calcium channel (LTCC) activity physiologically, but may exacerbate LTCC-dependent pathophysiology. We previously showed that CaMKII forms stable complexes with voltage-gated calcium channel (VGCC) beta(1b) or beta(2a) subunits, but not with the beta(3) or beta(4) subunits (Grueter et al. 2008).
View Article and Find Full Text PDFCa2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylates the beta2a subunit of voltage-gated Ca2+ channels at Thr498 to facilitate cardiac L-type Ca2+ channels. CaMKII colocalizes with beta2a in cardiomyocytes and also binds to a domain in beta2a that contains Thr498 and exhibits an amino acid sequence similarity to the CaMKII autoinhibitory domain and to a CaMKII binding domain in the NMDA receptor NR2B subunit (Grueter, C. E.
View Article and Find Full Text PDFL-type Ca(2+) channels (LTCCs) are major entry points for Ca(2+) in many cells. Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is associated with cardiac LTCC complexes and increases channel open probability (P(O)) to dynamically increase Ca(2+) current (I(Ca)) and augment cellular Ca(2+) signaling by a process called facilitation. However, the critical molecular mechanisms for CaMKII localization to LTCCs and I(Ca) facilitation in cardiomyocytes have not been defined.
View Article and Find Full Text PDF