Publications by authors named "Sundarrajan Asokan"

Highly infectious viral diseases are a serious threat to mankind as they can spread rapidly among the community, possibly even leading to the loss of many lives. Early diagnosis of a viral disease not only increases the chance of quick recovery, but also helps prevent the spread of infections. There is thus an urgent need for accurate, ultrasensitive, rapid, and affordable diagnostic techniques to test large volumes of the population to track and thereby control the spread of viral diseases, as evidenced during the COVID-19 and other viral pandemics.

View Article and Find Full Text PDF

The present in vitro study proposes a novel (to the best of our knowledge) methodology employing a fiber Bragg grating sensor for the evaluation of pulp chamber temperature increase during the polymerization of the composite resin induced by the light-curing process. A fiber Bragg grating temperature sensor (FBGTS) has been developed in view of its ease of insertion into the pulp chamber with minimal widening of the pulpal canal. The temperature increase in the pulpal chamber during the polymerization of the composite resin by light curing has been characterized with varying depths of cavities of 1 mm, 1.

View Article and Find Full Text PDF

Eye movement evaluation is vital for diagnosis of various ophthalmological and neurological disorders. The present study proposes a novel, noninvasive, wearable device to acquire the eye movement based on a Fiber Bragg Grating (FBG) Sensor. The proposed Fiber Bragg Grating Eye Tracker (FBGET) can capture the displacement of the eyeball during its movements in the form of strain variations on a cantilever.

View Article and Find Full Text PDF

Arterial pulse is an established source of information for the clinical assessment of cardiovascular health. The central aortic pressure is known to be a better predictor of cardiovascular status than the peripheral pressure. The carotid arterial pulse is considered to be the best indicator of the central aortic pressure.

View Article and Find Full Text PDF

Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique.

View Article and Find Full Text PDF

The maximum level of voluntary bite force, which results from the combined action of muscle of mastication, joints, and teeth, i.e., craniomandibular structure, is considered as one of the major indicators for the functional state of the masticatory system.

View Article and Find Full Text PDF

Several medical procedures involve the use of needles. The advent of robotic and robot assisted procedures requires dynamic estimation of the needle tip location during insertion for use in both assistive systems as well as for automatic control. Most prior studies have focused on the maneuvering of solid flexible needles using external force measurements at the base of the needle holder.

View Article and Find Full Text PDF

We demonstrate a simple and computationally efficient method to recover the shear modulus pertaining to the focal volume of an ultrasound transducer from the measured vibro-acoustic spectral peaks. A model that explains the transport of local deformation information with the acoustic wave acting as a carrier is put forth. It is also shown that the peaks correspond to the natural frequencies of vibration of the focal volume, which may be readily computed by solving an eigenvalue problem associated with the vibrating region.

View Article and Find Full Text PDF

A technique for real-time dynamic monitoring of force experienced by a spinal needle during lumbar puncture using a fiber Bragg grating (FBG) sensor is presented. The proposed FBG force device (FBGFD) evaluates the compressive force on the spinal needle during lumbar puncture, particularly avoiding the bending effect on the needle. The working principle of the FBGFD is based on transduction of force experienced by the spinal needle into strain variations monitored by the FBG sensor.

View Article and Find Full Text PDF

Improvements in emergency medicine in the form of efficient life supporting systems and intensive care have increased the survival rate in critically injured patients; however, in some cases, severe brain and spinal cord injuries can result in a locked-in syndrome or other forms of paralysis, and communication with these patients may become restricted or impossible. The present study proposes a noninvasive, real-time communication assistive methodology for those with restricted communication ability, employing a fiber Bragg grating (FBG) sensor. The communication assistive methodology comprises a breath pattern analyzer using an FBG sensor, which acquires the exhalation force that is converted into strain variations on a cantilever.

View Article and Find Full Text PDF

The present study reports an in vivo, novel methodology for the dynamic measurement of the bite force generated by individual tooth using a Fiber Bragg Grating Bite Force Recorder (FBGBFR). Bite force is considered as one of the major indicators of the functional state of the masticatory system, which is dependent on the craniomandibular structure comprising functional components such as muscles of mastication, joints and teeth. The proposed FBGBFR is an intra-oral device, developed for the transduction of the bite force exerted at the occlusal surface, into strain variations on a base plate, which in turn is sensed by the FBG sensor bonded over it.

View Article and Find Full Text PDF
Article Synopsis
  • E. coli bacteria are linked to various health outbreaks due to contaminated food and water, making their rapid detection essential for public safety.
  • A new method using a bare fiber Bragg grating (bFBG) sensor is introduced to detect E. coli for the first time, which involves immobilizing anti-E. coli antibodies on the sensor's surface.
  • The binding of E. coli to the sensor induces specific wavelength shifts that can be measured, and the effectiveness of this approach is validated through color changes in a substrate reaction and electron microscope imaging.
View Article and Find Full Text PDF

The present study reports a noninvasive technique for the measurement of the pulse transit time differential (PTTD) from the pulse pressure waveforms obtained at the carotid artery and radial artery using fiber Bragg grating pulse recorders (FBGPR). PTTD is defined as the time difference between the arrivals of a pulse pressure waveform at the carotid and radial arterial sites. The PTTD is investigated as an indicator of variation in the systolic blood pressure.

View Article and Find Full Text PDF

We have demonstrated novel concept of utilizing the photomechanical actuation in carbon nanotubes (CNTs) to tune and reversibly switch the Bragg wavelength. When fiber Bragg grating coated with CNTs (CNT-FBG) is exposed externally to a wide range of optical wavelengths, e.g.

View Article and Find Full Text PDF

We report a blood pressure evaluation methodology by recording the radial arterial pulse waveform in real time using a fiber Bragg grating pulse device (FBGPD). Here, the pressure responses of the arterial pulse in the form of beat-to-beat pulse amplitude and arterial diametrical variations are monitored. Particularly, the unique signatures of pulse pressure variations have been recorded in the arterial pulse waveform, which indicate the systolic and diastolic blood pressure while the patient is subjected to the sphygmomanometric blood pressure examination.

View Article and Find Full Text PDF