Publications by authors named "Sundararajan Mahalingam"

Fatty liver is the earliest response of the liver to excessive alcohol consumption. Previously we identified that chronic alcohol administration increases levels of stomach-derived hormone, ghrelin, which by reducing circulating insulin levels, ultimately contributes to the development of alcohol-associated liver disease (ALD). In addition, ghrelin directly promotes fat accumulation in hepatocytes by enhancing de novo lipogenesis.

View Article and Find Full Text PDF

The development of alcohol-associated liver disease (ALD) is associated with disorganized Golgi apparatus and accelerated phagophore formation. While Golgi membranes may contribute to phagophores, association between Golgi alterations and macroautophagy/autophagy remains unclear. GOLGA4/p230 (golgin A4), a dimeric Golgi matrix protein, participates in phagophore formation, but the underlying mechanism is elusive.

View Article and Find Full Text PDF

Quorum sensing (QS) is the ability of bacteria to monitor their population density and adjust gene expression accordingly. QS-regulated processes include host-microbe interactions, horizontal gene transfer, and multicellular behaviours (such as the growth and development of biofilm). The creation, transfer, and perception of bacterial chemicals known as autoinducers or QS signals are necessary for QS signalling (e.

View Article and Find Full Text PDF
Article Synopsis
  • Fatty liver disease is the initial response to excessive alcohol consumption, making the liver more vulnerable to severe liver issues.
  • The study focused on the effects of GLP-1 agonist exendin-4 on chronic alcohol-induced liver problems in rats, assessing its impact on hormone levels and fat metabolism.
  • Results showed that exendin-4 improved liver health by enhancing insulin signaling and reducing fat accumulation in the liver without affecting overall body weight.
View Article and Find Full Text PDF

Smaller oligomeric chaperones of α-crystallins (αA- and αB-) have received increasing attention due to their improved therapeutic potential in preventing protein aggregating diseases. Our previous study suggested that deleting 54-61 residues from the N-terminal domain (NTD) of αB-crystallin (αBΔ54-61) decreases the oligomer size and increases the chaperone function. Several studies have also suggested that NTD plays a significant role in protein oligomerization and chaperone function.

View Article and Find Full Text PDF

Previously, we showed that the removal of the 54-61 residues from αB-crystallin (αBΔ54-61) results in a fifty percent reduction in the oligomeric mass and a ten-fold increase in chaperone-like activity. In this study, we investigated the oligomeric organization changes in the deletion mutant contributing to the increased chaperone activity and evaluated the cytoprotection properties of the mutant protein using ARPE-19 cells. Trypsin digestion studies revealed that additional tryptic cleavage sites become susceptible in the deletion mutant than in the wild-type protein, suggesting a different subunit organization in the oligomer of the mutant protein.

View Article and Find Full Text PDF

The G98R mutation in αA-crystallin is associated with the onset of presenile cataract and is characterized biochemically by an increased oligomeric mass, altered chaperone function, and loss of structural stability over time. Thus, far, it is not known whether the inherent instability caused by gain-of-charge mutation could be rescued by a compensatory loss of charge mutation elsewhere on the protein. To answer this question, we investigated whether αA-G98R-mediated instability could be rescued through suppressor mutations by introducing site-specific "compensatory" mutations in αA-G98R-crystallin, αA-R21Q/G98R, αA-G98R/R116C, and αA-R157Q/G98R.

View Article and Find Full Text PDF

Combined antifungal and antioxidant therapy may help to reduce oxidative stress in fungal keratitis. Experimental Fusarium solani keratitis was induced by application of F. solani conidia to scarified cornea (right eye) of 16 rabbits (another four rabbits were negative controls [Group I]).

View Article and Find Full Text PDF

Modern herbal medicine has played a significant role in treating oxidative stress and related complications. In the present investigation, gas chromatography-mass spectrometric analysis of ethanolic extracts of the leaf and of the root of Leucas aspera (L. aspera) (Willd.

View Article and Find Full Text PDF

Purpose: Selenite-induced cataract is associated with oxidative stress, loss of calcium homeostasis, activation of calpain enzymes, and apoptotic cell death in the lens. An evaluation of naturally occurring antioxidants that also restrict calcium influx into the lens and calpain activation and thus prevent lenticular cell death may lead to the development of safe and effective anticataractogenic drugs. This study focuses on a naturally occurring flavone, chrysin, and its efficacy in preventing cataractogenic changes in in vitro cultured Wistar rat lenses.

View Article and Find Full Text PDF

The study was aimed at assessing the effects of indigenous Plant Growth Promoting Bacterium (PGPB) on the legume Pongamia pinnata in the degraded soil of the Nanmangalam Reserve Forest (NRF) under nursery conditions. In total, 160 diazotrophs were isolated from three different nitrogen-free semi-solid media (LGI, Nfb, and JMV). Amongst these isolates, Pseudomonas aeruginosa RRALC3 exhibited the maximum ammonia production and hence was selected for further studies.

View Article and Find Full Text PDF

Hypercholesterolemia is a dominant risk factor for atherosclerosis and cardiovascular diseases. In the present study, the putative antihypercholesterolemic and antioxidative properties of an ethanolic extract of Piper betle and of its active constituent, eugenol, were evaluated in experimental hypercholesterolemia induced by a single intraperitoneal injection of Triton WR-1339 (300 mg/kg b.wt) in Wistar rats.

View Article and Find Full Text PDF