Electrospun polystyrene (PS) fibers are produced using a mixed solvent of chloroform and n,n-dimethylformamide (DMF) to investigate the influence of the solvent ratio on the fiber surface morphology and contact angle of the obtained mats. Electrospinning is a simple processing technique for producing fibers with diameters in the range of nanometers to a few micrometers. When using the different solvent ratios for this process, porous PS membranes are created due to nonsolvent and thermally induced phase separation (N-TIPS).
View Article and Find Full Text PDFEnhancing interfacial adhesion in polypropylene (PP)/recycled polyethylene terephthalate (rPET) blends is crucial for the effective mechanical recycling of these commercial plastic wastes. This study investigates the reactive extrusion of PP/rPET blends using a dual compatibilizer system comprising maleic anhydride grafted polypropylene (PP-g-MA) and various glycidyl methacrylate (GMA)-based compatibilizers. The effects of backbone structure and reactive group on the morphological, mechanical, and thermal characteristics were systematically studied.
View Article and Find Full Text PDFThe increase in the world population and the intensification of agricultural practices have resulted in the release of several contaminants into the environment, especially pesticides and heavy metals. This article reviews recent advances in using adsorbent and catalytic materials for environmental decontamination. Different materials, including clays, carbonaceous, metallic, polymeric, and hybrid materials, are evaluated for their effectiveness in pollutant removal.
View Article and Find Full Text PDFThe use of plastics in automobiles is increasing dramatically due to their advantages of low weight and cost-effectiveness. Various products can be manufactured by recycling end-of-life vehicle (ELV) plastic waste, enhancing sustainability within this sector. This study presents the development of an electromagnetic interference (EMI) shield that can be used for protecting electronic devices in vehicles by recycling waste bumpers of ethylene propylene diene monomer (EPDM) rubber from ELVs.
View Article and Find Full Text PDFMultifunctional bio-adhesives with tunable mechanical properties are obtained by controlling the orientation of anisotropic particles in a blend of fast-curing hydrogel with an imposed capillary flow. The suspensions' microstructural evolution was monitored by the small-angle light scattering (SALS) method during flow up to the critical Péclet number (Pe≈1) necessary for particle orientation and hydrogel crosslinking. The multifunctional bio-adhesives were obtained by combining flow and UV light exposure for rapid photo-curing of PEGDA medium and freezing titania rods' ordered microstructures.
View Article and Find Full Text PDFDisease diagnosis and monitoring using conventional healthcare services is typically expensive and has limited accuracy. Wearable health technology based on flexible electronics has gained tremendous attention in recent years for monitoring patient health owing to attractive features, such as lower medical costs, quick access to patient health data, ability to operate and transmit data in harsh environments, storage at room temperature, non-invasive implementation, mass scaling, etc. This technology provides an opportunity for disease pre-diagnosis and immediate therapy.
View Article and Find Full Text PDFKinetic factors that facilitate carbon nanotube (CNT) migration in a polymer blend from a high-density polyethylene (HDPE) phase to a poly (p-phenylene ether) (PPE) phase were studied, with the objective to induce CNT migration and localization at the interface. Herein, a CNT filler was pre-localized in an HDPE polymer and then blended with PPE at different blend compositions of 20:80, 40:60, 60:40, and 80:20 of PPE/HDPE at a constant filler concentration of 1 wt%. The level of CNT migration was studied at different mixing times of 5 and 10 min.
View Article and Find Full Text PDFIn this work, the effects of MWCNT concentration and mixing time on the migration of multi-walled carbon nanotubes (MWCNTs) within polyethylene oxide (PEO)/polyethylene (PE) blends are studied. Two-step mixing used to pre-localize MWCNTs within the PE phase and subsequently to observe their migration into the thermodynamically favored PEO phase. SEM micrographs show that many MWCNTs migrated into PEO.
View Article and Find Full Text PDFThe use of fluoroelastomer nanocomposites for flexible electronics is increasing due to their high deformability and recoverability. Often, a high amount of conductive nanofillers and crosslinking agents is required to improve their mechanical performance, which unfavorably affects the electrical percolation threshold and conductivity due to dispersion issues. Herein, we developed a unique solution mixing (SM) technique by a fine-tuned formulation to obtain well-dispersed carbon nanotubes (CNTs) in fluoroelastomer FKM for both low and high CNT concentrations (0.
View Article and Find Full Text PDFThe rapid co-assembly of graphene oxide (GO) nanosheets and a surfactant at the oil/water (O/W) interface is harnessed to develop a new class of soft materials comprising continuous, multilayer, interpenetrated, and tubular structures. The process uses a microfluidic approach that enables interfacial complexation of two-phase systems, herein, termed as "liquid streaming" (LS). LS is demonstrated as a general method to design multifunctional soft materials of specific hierarchical order and morphology, conveniently controlled by the nature of the oil phase and extrusion's injection pressure, print-head speed, and nozzle diameter.
View Article and Find Full Text PDFIn this work, the effects of blend ratio and mixing time on the migration of multi-walled carbon nanotubes (MWCNTs) within poly(vinylidene fluoride) (PVDF)/polyethylene (PE) blends are studied. A novel two-step mixing approach was used to pre-localize MWCNTs within the PE phase, and subsequently allow them to migrate into the thermodynamically favored PVDF phase. Light microscopy images confirm that MWCNTs migrate from PE to PVDF, and transmission electron microscopy (TEM) images show individual MWCNTs migrating fully into PVDF, while agglomerates remained trapped at the PVDF/PE interface.
View Article and Find Full Text PDFThis study intends to reveal the significance of the catalyst to substrate ratio (C/S) on the structural and electrical features of the carbon nanotubes and their polymeric nanocomposites. Here, nitrogen-doped carbon nanotube (N-MWNT) was synthesized via a chemical vapor deposition (CVD) method using three ratios (by weight) of iron (Fe) catalyst to aluminum oxide (AlO) substrate, i.e.
View Article and Find Full Text PDFThe process of strengthening interfaces in polymer blend nanocomposites (PBNs) has been studied extensively, however a corresponding significant enhancement in the electrical and rheological properties is not always achieved. In this work, we exploit the chemical reaction between polystyrene maleic anhydride and the amine group in nylon (polyamide) to achieve an in-situ compatibilization during melt processing. Herein, nanocomposites were made by systematically adding polystyrene maleic anhydride (PSMA) at different compositions (1-10 vol%) in a two-step mixing sequence to a Polystyrene (PS)/Polyamide (aPA) blend with constant composition ratio of 25:75 (PS + PSMA:aPA) and 1.
View Article and Find Full Text PDFThis study intends to show the potential application of a non-recyclable plastic waste towards the development of electrically conductive nanocomposites. Herein, the conductive nanofiller and binding matrix are carbon nanotubes (CNT) and polystyrene (PS), respectively, and the waste material is a plastic foam consisting of mainly vulcanized nitrile butadiene rubber and polyvinyl chloride (PVC). Two nanocomposite systems, i.
View Article and Find Full Text PDFFor the first time, an "Evaporated-Nitrogen" Minimally Intensive Layer Delamination (EN-MILD) synthesis approach is reported to synthesize exceptionally high quality MXene sheets. In the EN-MILD method, the concentrations of acids and Li-ions are continuously increased during the etching process. By implementing the EN-MILD approach, the electrical conductivity increases up to 2.
View Article and Find Full Text PDFThis work studied the impact of three types of styrene-butadiene (SB and SBS) block copolymers on the morphology, electrical, and rheological properties of immiscible blends of polypropylene:polystyrene (PP:PS)/multi-walled carbon nanotubes (MWCNT) with a fixed blend ratio of 70:30 vol.%. The addition of block copolymers to PP:PS/MWCNT blend nanocomposites produced a decrease in the droplet size.
View Article and Find Full Text PDFAdditive manufacturing has shown promising results in reconstructing three-dimensional (3D) living tissues for various applications, including tissue engineering, regenerative medicine, drug discovery, and high-throughput drug screening. In extrusion-based bioprinters, stable formation of filaments and high-fidelity deposition of bioinks are the primary challenges in fabrication of physiologically relevant tissue constructs. Among various bioinks, gelatin methacryloyl (GelMA) is known as a photocurable and physicochemically tunable hydrogel with a demonstrated biocompatibility and tunable biodegradation properties.
View Article and Find Full Text PDFThe multifunctional nanostructures with superparamagnetic and luminescent properties undergo revolution in the field of bio-nanotechnology. In this article, we reported a facile and efficient one-step modified co-precipitation method to load superparamagnetic FeO nanoparticle on oxidized nanodiamond (Ox-ND). Subsequently, the as-prepared Ox-ND/FeO hybrid nanoparticle was surface functionalized with vinyltrimethoxysilane (VTMS) to enhance its compatibility with organic media.
View Article and Find Full Text PDFTransparent electromagnetic interference (EMI) shields are increasingly in demand for medical, military, wireless networks, aerospace electronics, and navigation control systems. To date, researchers have mixed pristine and/or doped conductive polymers with carbon allotropes and metallic fillers to increase the total shielding effectiveness, compromising the transparency, amount of the materials used, and weight of the shields. Obtaining cost-effective and transparent EMI shields without the need to incorporate fillers is extremely desirable.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2020
Hypothesis: The properties of oil-in-water emulsions are influenced by the rheology of the aqueous phase (continuous phase) and the rheology of the oil-water interfaces. The bulk and interfacial rheological parameters can be tuned by incorporating nanoparticles (NPs) featuring different surface chemistries and polymers with different chemical or physical structures. Therefore, NPs and polymers can be used to formulate emulsions with different properties.
View Article and Find Full Text PDFIntroduction: The advent of metal flow-diverting stents has provided neurointerventionalists with an option for treating aneurysms without requiring manipulations within the aneurysm sac. The large amount of metal in these stents, however, can lead to early and late thrombotic complications, and thus requires long-term antiplatelet agents. Bioabsorbable stents have been postulated to mitigate the risk of these complications.
View Article and Find Full Text PDFNitrogen-doped multiwall carbon nanotubes (N-MWNTs) with different structures were synthesized by employing chemical vapor deposition and changing the argon/ethane/nitrogen gas precursor ratio and synthesis time, and broadband dielectric properties of their poly(vinylidene fluoride) (PVDF)-based nanocomposites were investigated. The structure, morphology, and electrical conductivity of synthesized N-MWNTs were assessed via Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy, and powder conductivity techniques. The melt compounded PVDF nanocomposites manifested significantly high real part of the permittivity (ε') along with low dissipation factor (tan δ) in 0.
View Article and Find Full Text PDF