Although several families of compounds have been identified as scaffolds for inhibitors of the CYP1 family, the isoform selectivity determining structural features has not been fully clarified at the molecular interaction level. We studied the CYP1 isoform selectivity for stilbenoid inhibitors using integrated induced fit docking and molecular dynamics simulations. The hydrophobic interactions with the specific phenylalanine residues in the F helix are correlated with inhibitory potency in the CYP1 family.
View Article and Find Full Text PDFATP binding cassette (ABC) transporters of the exporter class harness the energy of ATP hydrolysis in the nucleotide-binding domains (NBDs) to power the energetically uphill efflux of substrates by a dedicated transmembrane domain (TMD). Although numerous investigations have described the mechanism of ATP hydrolysis and defined the architecture of ABC exporters, a detailed structural dynamic understanding of the transduction of ATP energy to the work of substrate translocation remains elusive. Here we used double electron-electron resonance and molecular dynamics simulations to describe the ATP- and substrate-coupled conformational cycle of the mouse ABC efflux transporter P-glycoprotein (Pgp; also known as ABCB1), which has a central role in the clearance of xenobiotics and in cancer resistance to chemotherapy.
View Article and Find Full Text PDFPhotosystem II (PSII), a large pigment protein complex, undergoes rapid turnover under natural conditions. During assembly of PSII, oxidative damage to vulnerable assembly intermediate complexes must be prevented. Psb28, the only cytoplasmic extrinsic protein in PSII, protects the RC47 assembly intermediate of PSII and assists its efficient conversion into functional PSII.
View Article and Find Full Text PDFHDAC8 inhibitors have become an attractive treatment for cancer. This study aimed to facilitate the identification of potential chemical scaffolds for the selective inhibition of histone deacetylase 8 (HDAC8) using in silico approaches. Non-linear QSAR classification and regression models of HDAC8 inhibitors were developed with support vector machine.
View Article and Find Full Text PDFSmall diffusible redox proteins facilitate electron transfer in respiration and photosynthesis by alternately binding to their redox partners and integral membrane proteins and exchanging electrons. Diffusive search, recognition, binding, and unbinding of these proteins often amount to kinetic bottlenecks in cellular energy conversion, but despite the availability of structures and intense study, the physical mechanisms controlling redox partner interactions remain largely unknown. The present molecular dynamics study provides an all-atom description of the cytochrome c2-docked bc1 complex in Rhodobacter sphaeroides in terms of an ensemble of favorable docking conformations and reveals an intricate series of conformational changes that allow cytochrome c2 to recognize the bc1 complex and bind or unbind in a redox state-dependent manner.
View Article and Find Full Text PDFThe cellular membrane constitutes the first element that encounters a wide variety of molecular species to which a cell might be exposed. Hosting a large number of structurally and functionally diverse proteins associated with this key metabolic compartment, the membrane not only directly controls the traffic of various molecules in and out of the cell, it also participates in such diverse and important processes as signal transduction and chemical processing of incoming molecular species. In this article, we present a number of cases where details of interaction of small molecular species such as drugs with the membrane, which are often experimentally inaccessible, have been studied using advanced molecular simulation techniques.
View Article and Find Full Text PDFPrimary hypercholesterolemia is the root cause for major health issues like coronary heart disease and atherosclerosis. Regulating plasma cholesterol level, which is the product of biosynthesis as well as dietary intake, has become one of the major therapeutic strategies to effectively control these diseases. Human cholesterol esterase (hCEase) is an interesting target involved in the regulation of plasma cholesterol level and thus inhibition of this enzyme is highly effective in the treatment of hypercholesterolemia.
View Article and Find Full Text PDFActivation of the peroxisome proliferator-activated receptor γ (PPARγ) is important for the treatment of type 2 diabetes and obesity through the regulation of glucose metabolism and fatty acid accumulation. Hence, the discovery of novel PPARγ agonists is necessary to overcome these diseases. In this study, a newly developed approach, multi-conformation dynamic pharmacophore modeling (MCDPM), was used for screening candidate compounds that can properly bind PPARγ.
View Article and Find Full Text PDFThe sonic hedgehog (Shh) signaling pathway is necessary for a variety of development and differentiation during embryogenesis as well as maintenance and renascence of diverse adult tissues. However, an abnormal activation of the signaling pathway is related to various cancers. In this pathway, the Shh signaling transduction is facilitated by binding of Shh to its receptor protein, Ptch.
View Article and Find Full Text PDFBackground: Human LTA4H catalyzes the conversion of LTA4 to LTB4 and plays a key role in innate immune responses. Inhibition of this enzyme can be a valid method in the treatment of inflammatory response exhibited through LTB4.
Results & Discussion: The quantitative structure-activity relationship (QSAR) models were developed using genetic function approximation and validated.
Histone deacetylases (HDACs) have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively.
View Article and Find Full Text PDF2-Cys peroxiredoxins (Prxs) play important roles in the protection of chloroplast proteins from oxidative damage. Arabidopsis NADPH-dependent thioredoxin reductase isotype C (AtNTRC) was identified as efficient electron donor for chloroplastic 2-Cys Prx-A. There are three isotypes (A, B, and C) of thioredoxin reductase (TrxR) in Arabidopsis.
View Article and Find Full Text PDFHuman leukotriene A4 hydrolase (hLTA4H), which is the final and rate-limiting enzyme of arachidonic acid pathway, converts the unstable epoxide LTA4 to a proinflammatory lipid mediator LTB4 through its hydrolase function. The LTA4H is a bi-functional enzyme that also exhibits aminopeptidase activity with a preference over arginyl tripeptides. Various mutations including E271Q, R563A, and K565A have completely or partially abolished both the functions of this enzyme.
View Article and Find Full Text PDFTo provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4-diazepane-2,5-diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4-diazepane-2,5-diones ring are essential for effective binding of inhibitors at active site of enzyme.
View Article and Find Full Text PDFSirtuin, NAD(+)-dependent histone deacetylase enzyme, emerged as a potential therapeutic target, and modulations by small molecules could be effective drugs for various diseases. Owing to the absence of complex structure of sirtuin 2 (SIRT2), sirtinol was docked in the NAD(+) binding site and subjected to 5-nseconds molecular dynamics (MD) simulation. LigandScout was used to develop hypotheses based on 3-representative SIRT2 complex structures from MD.
View Article and Find Full Text PDFHuman leukotriene A4 hydrolase (hLTA4H) is a bi-functional enzyme catalyzes the hydrolase and aminopeptidase functions upon the fatty acid and peptide substrates, respectively, utilizing the same but overlapping binding site. Particularly the hydrolase function of this enzyme catalyzes the rate-limiting step of the leukotriene (LT) cascade that converts the LTA4 to LTB4. This product is a potent pro-inflammatory activator of inflammatory responses and thus blocking this conversion provides a valuable means to design anti-inflammatory agents.
View Article and Find Full Text PDFThe chimeric proteins viz. CBM3-Cel9A, CBM4-Cel9A and CBM30-Cel9A, are constructed by fusion of family 3, 4, and 30 cellulose binding modules (CBMs) to N-terminus of family 9 endoglucanase (Cel9A) from Alicyclobacillus acidocaldrious. The chimeric enzymes were successfully expressed in Escherichia coli and purified to homogeneity.
View Article and Find Full Text PDFBackground: Renin has become an attractive target in controlling hypertension because of the high specificity towards its only substrate, angiotensinogen. The conversion of angiotensinogen to angiotensin I is the first and rate-limiting step of renin-angiotensin system and thus designing inhibitors to block this step is focused in this study.
Methods: Ligand-based quantitative pharmacophore modeling methodology was used in identifying the important molecular chemical features present in the set of already known active compounds and the missing features from the set of inactive compounds.
Human pancreatic cholesterol esterase (hCEase) is one of the lipases found to involve in the digestion of large and broad spectrum of substrates including triglycerides, phospholipids, cholesteryl esters, etc. The presence of bile salts is found to be very important for the activation of hCEase. Molecular dynamic simulations were performed for the apoform and bile salt complexed form of hCEase using the co-ordinates of two bile salts from bovine CEase.
View Article and Find Full Text PDFHistone deacetylase 8 (HDAC8) is an enzyme involved in deacetylating the amino groups of terminal lysine residues, thereby repressing the transcription of various genes including tumor suppressor gene. The over expression of HDAC8 was observed in many cancers and thus inhibition of this enzyme has emerged as an efficient cancer therapeutic strategy. In an effort to facilitate the future discovery of HDAC8 inhibitors, we developed two pharmacophore models containing six and five pharmacophoric features, respectively, using the representative structures from two molecular dynamic (MD) simulations performed in Gromacs 4.
View Article and Find Full Text PDFHuman chymase is a very important target for the treatment of cardiovascular diseases. Using a series of theoretical methods like pharmacophore modeling, database screening, molecular docking and Density Functional Theory (DFT) calculations, an investigation for identification of novel chymase inhibitors, and to specify the key factors crucial for the binding and interaction between chymase and inhibitors is performed. A highly correlating (r = 0.
View Article and Find Full Text PDFCathepsin D is a major component of lysosomes and plays a major role in catabolism and degenerative diseases. The quantitative structure-activity relationship study was used to explore the critical chemical features of cathepsin D inhibitors. Top 10 hypotheses were built based on 36 known cathepsin D inhibitors using HypoGen/Discovery Studio v2.
View Article and Find Full Text PDFAldose reductase 2 (ALR2), which catalyzes the reduction of glucose to sorbitol using NADP as a cofactor, has been implicated in the etiology of secondary complications of diabetes. A pharmacophore model, Hypo1, was built based on 26 compounds with known ALR2-inhibiting activity values. Hypo1 contains important chemical features required for an ALR2 inhibitor, and demonstrates good predictive ability by having a high correlation coefficient (0.
View Article and Find Full Text PDFHistone deacetylases (HDACs) are key regulators of gene expression and thereby compelling targets in the treatment of various cancers. Class- and isoform-selective HDAC inhibitors targeting the particular isoform to treat cancers without affecting the normal expression of other isoforms are highly desirable. Molecular dynamics simulations were performed with the set of selective inhibitors and HDAC isoforms of three different classes.
View Article and Find Full Text PDFSonic hedgehog (Shh) plays an important role in the activation of Shh signaling pathway that regulates preservation and rebirth of adult tissues. An abnormal activation of this pathway has been identified in hyperplasia and various tumorigenesis. Hence the inhibition of this pathway using a Shh inhibitor might be an efficient way to treat a wide range of malignancies.
View Article and Find Full Text PDF