Thermoinhibition, the suppression of seed germination by high temperatures, is an adaptive trait that ensures successful seedling establishment in natural environments. While beneficial for wild plants, thermoinhibition can adversely affect crop yields due to uneven and reduced germination rates, particularly in the face of climate change. To understand the genetic basis of thermoinhibition, we conducted a comprehensive genetic analysis of a diverse panel of Lactuca spp.
View Article and Find Full Text PDFDeveloping lettuce varieties with salt tolerance at the seed germination stage is essential since lettuce seeds are planted half an inch deep in soil where salt levels are often highest in the salinity-affected growing regions. Greater knowledge of genetics and genomics of salt tolerance in lettuce will facilitate breeding of improved lettuce varieties with salt tolerance. Accordingly, we conducted a genome-wide association study (GWAS) in lettuce to identify marker-trait association for salt tolerance at the seed germination stage.
View Article and Find Full Text PDFSustainable winter production in lettuce requires freezing tolerant varieties. This study identified a wild-type allele of LsCBF7 that could contribute to freezing tolerance improvement in lettuce. Lettuce is one of the most consumed vegetables globally.
View Article and Find Full Text PDFA newly documented pathotype 5 of the soil-borne fungus , causing head smut in sorghum, was tested against 153 unexplored Senegalese sorghum accessions. Among the 153 sorghum accessions tested, 63 (41%) exhibited complete resistance, showing no signs of infection by the fungus. The remaining 90 accessions (59%) displayed varying degrees of susceptibility.
View Article and Find Full Text PDFThe World Collection of Sugarcane and Related Grasses, maintained at the USDA-ARS in Miami, FL, is one of the largest sugarcane germplasm repositories in the world. However, the genetic integrity of the spp. germplasm in this collection has not been fully analyzed.
View Article and Find Full Text PDFThe APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) gene family plays vital roles in plants, serving as a key regulator in responses to abiotic stresses. Despite its significance, a comprehensive understanding of this family in lettuce remains incomplete. In this study, we performed a genome-wide search for the AP2/ERF family in lettuce and identified a total of 224 members.
View Article and Find Full Text PDFSince the early 19th century, a substantial amount of jujube ( spp.) germplasm has been introduced from China and Europe into the United States. However, due to a lack of passport data, cultivar mislabeling is common and the genetic background of the introduced germplasm remains unknown.
View Article and Find Full Text PDFGenetic diversity is an important resource in crop breeding to improve cultivars with desirable traits. Selective breeding can lead to a reduction of genetic diversity. However, our understanding on this subject remains limited in lettuce (Lactuca sativa L.
View Article and Find Full Text PDFThe C-repeat binding factor (CBF)/dehydration-responsive element binding (DREB1) proteins play a prominent role in freezing tolerance and are highly conserved in higher plants. Here we performed a genome-wide search of the CBF/DREB1 gene family in lettuce (Lactuca sativa L.) and identified 14 members of the family with one member gene containing a non-sense mutation within the AP2 DNA-binding domain.
View Article and Find Full Text PDFThe Arabidopsis thaliana Calmodulin-binding Transcription Activator (CAMTA) transcription factors CAMTA1, CAMTA2, and CAMTA3 (CAMTA123) serve as master regulators of salicylic acid (SA)-mediated immunity, repressing the biosynthesis of SA in healthy plants. Here, we show that CAMTA123 also repress the biosynthesis of pipecolic acid (Pip) in healthy plants. Loss of CAMTA123 function resulted in the induction of AGD2-like defense response protein 1 (ALD1), which encodes an enzyme involved in Pip biosynthesis.
View Article and Find Full Text PDFArabidopsis thaliana (Arabidopsis) increases in freezing tolerance in response to low nonfreezing temperatures, a phenomenon known as cold acclimation. The CBF regulatory pathway, which contributes to cold acclimation, includes three genes-CBF1, CBF2 and CBF3-encoding closely-related transcription factors that regulate the expression of more than 100 genes-the CBF regulon-that impart freezing tolerance. Here we compare the CBF pathways of two Arabidopsis ecotypes collected from sites in Sweden (SW) and Italy (IT).
View Article and Find Full Text PDFcalmodulin binding transcription activator (CAMTA) factors repress the expression of genes involved in salicylic acid (SA) biosynthesis and SA-mediated immunity in healthy plants grown at warm temperature (22°C). This repression is overcome in plants exposed to low temperature (4°C) for more than a week and in plants infected by biotrophic and hemibiotrophic pathogens. Here, we present evidence that CAMTA3-mediated repression of SA pathway genes in nonstressed plants involves the action of an N-terminal repression module (NRM) that acts independently of calmodulin (CaM) binding to the IQ and CaM binding (CaMB) domains, a finding that is contrary to current thinking that CAMTA3 repression activity requires binding of CaM to the CaMB domain.
View Article and Find Full Text PDFThe natural range of Arabidopsis thaliana (Arabidopsis) encompasses geographical regions that have greatly differing local climates, including harshness of winter temperatures. A question thus raised is whether differences in freezing tolerance might contribute to local adaptation in Arabidopsis. Consistent with this possibility is that Arabidopsis accessions differ in freezing tolerance and that those collected from colder northern latitudes are generally more tolerant to freezing than those collected from warmer southern latitudes.
View Article and Find Full Text PDFExposure of Arabidopsis thaliana plants to low non-freezing temperatures results in an increase in freezing tolerance that involves action of the C-repeat binding factor (CBF) regulatory pathway. CBF1, CBF2 and CBF3, which are rapidly induced in response to low temperature, encode closely related AP2/ERF DNA-binding proteins that recognize the C-repeat (CRT)/dehydration-responsive element (DRE) DNA regulatory element present in the promoters of CBF-regulated genes. The CBF transcription factors alter the expression of more than 100 genes, known as the CBF regulon, which contribute to an increase in freezing tolerance.
View Article and Find Full Text PDFMannans are hemicellulosic polysaccharides that have a structural role and serve as storage reserves during plant growth and development. Previous studies led to the conclusion that mannan synthase enzymes in several plant species are encoded by members of the cellulose synthase-like A (CSLA) gene family. Arabidopsis has nine members of the CSLA gene family.
View Article and Find Full Text PDFPrevious studies in Arabidopsis thaliana established roles for CALMODULIN BINDING TRANSCRIPTION ACTIVATOR 3 (CAMTA3) in the rapid cold induction of CRT/DRE BINDING FACTOR (CBF) genes CBF1 and CBF2, and the repression of salicylic acid (SA) biosynthesis at warm temperature. Here we show that CAMTA1 and CAMTA2 work in concert with CAMTA3 at low temperature (4°C) to induce peak transcript levels of CBF1, CBF2 and CBF3 at 2 h, contribute to up-regulation of approximately 15% of the genes induced at 24 h, most of which fall outside the CBF pathway, and increase plant freezing tolerance. In addition, CAMTA1, CAMTA2 and CAMTA3 function together to inhibit SA biosynthesis at warm temperature (22°C).
View Article and Find Full Text PDFHistone lysine methylation patterns underlie much of the functional diversity of nucleosomes in eukaryotes, and an interesting aspect of histone methylation is the potential functional specificity for different methylation states on a given lysine. Trimethylation of histone H3 (H3K27me3) is intimately related to developmental gene silencing through the so-called Polycomb Group (PcG) mechanism. How this modification becomes established at PcG-repressed loci is generally not known, but it has been suggested that it may be facilitated by prior occupancy by H3K27me2.
View Article and Find Full Text PDFPaf1C is a transcriptional cofactor that has been implicated in various transcription-associated mechanisms spanning initiation, elongation and RNA processing, and is important for multiple aspects of development in Arabidopsis. Our recent studies suggest Arabidopsis Paf1C is crucial for proper regulation of genes within H3K27me3-enriched chromatin, and that a protein named PHP may act as an accessory subunit of Paf1C that promotes this function.
View Article and Find Full Text PDFThe human Paf1 complex (Paf1C) subunit Parafibromin assists in mediating output from the Wingless/Int signaling pathway, and dysfunction of the encoding gene HRPT2 conditions specific cancer-related disease phenotypes. Here, we characterize the organismal and molecular roles of PLANT HOMOLOGOUS TO PARAFIBROMIN (PHP), the Arabidopsis (Arabidopsis thaliana) homolog of Parafibromin. PHP resides in an approximately 670-kD protein complex in nuclear extracts, and physically interacts with other known Paf1C-related proteins in vivo.
View Article and Find Full Text PDFIn budding yeast, intragenic histone modification is linked with transcriptional elongation through the conserved regulator Paf1C. To investigate Paf1C-related function in higher eukaryotes, we analyzed the effects of loss of Paf1C on histone H3 density and patterns of H3 methylated at K4, K27, and K36 in Arabidopsis genes, and integrated this with existing gene expression data. Loss of Paf1C did not change global abundance of H3K4me3 or H3K36me2 within chromatin, but instead led to a 3' shift in the distribution of H3K4me3 and a 5' shift in the distribution of H3K36me2 within genes.
View Article and Find Full Text PDFCycling between vegetative growth and dormancy is an important adaptive mechanism in temperate woody plants. To gain insights into the underlying molecular mechanisms, we carried out global transcription analyses on stem samples from poplar (Populus deltoides Bartr. ex Marsh.
View Article and Find Full Text PDF