Lattice-like structures known as perineuronal nets (PNNs) are key components of the extracellular matrix (ECM). Once fully crystallized by adulthood, they are largely stable throughout life. Contrary to previous reports that PNNs inhibit processes involving plasticity, here we report that the dynamic regulation of PNN expression in the adult auditory cortex is vital for fear learning and consolidation in response to pure tones.
View Article and Find Full Text PDFPost-traumatic stress disorder (PTSD) is a highly debilitating stress and anxiety-related disorder that occurs in response to specific trauma or abuse. Genetic risk factors may account for up to 30-40% of the heritability of PTSD. Understanding the gene pathways that are associated with PTSD, and how those genes interact with the fear and stress circuitry to mediate risk and resilience for PTSD will enable the development of targeted therapies to prevent the occurrence of or decrease the severity of this complex multi-gene disorder.
View Article and Find Full Text PDFMost birds are socially monogamous, yet little is known about the neural pathways underlying avian monogamy. Recent studies have implicated dopamine as playing a role in courtship and affiliation in a socially monogamous songbird, the zebra finch (Taeniopygia guttata). In the present study, we sought to understand the specific contribution to pair formation in zebra finches of the mesolimbic dopaminergic pathway that projects from the midbrain ventral tegmental area to the nucleus accumbens.
View Article and Find Full Text PDFMuch of the literature on maternal behavior has focused on the role of infant experience and hormones in a canonical subcortical circuit for maternal motivation and maternal memory. Although early studies demonstrated that the cerebral cortex also plays a significant role in maternal behaviors, little has been done to explore what that role may be. Recent work though has provided evidence that the cortex, particularly sensory cortices, contains correlates of sensory memories of infant cues, consistent with classical studies of experience-dependent sensory cortical plasticity in non-maternal paradigms.
View Article and Find Full Text PDFGen Comp Endocrinol
September 2013
Maternal effects are influences of parents on offspring phenotype occurring through pathways other than inherited DNA. In birds, two important routes for such transmission are parental behavior and non-DNA egg constituents such as yolk hormones. Offspring traits subject to parental effects include behavior and endocrine function.
View Article and Find Full Text PDFFear and anxiety are debilitating conditions that affect a significant number of individuals in their lifetimes. Understanding underlying mechanisms of these disorders affords us the possibility of therapeutic intervention. Such clarity in terms of mechanism and intervention can only come from an amalgamation of research from human to animal studies that attempt to mimic the human condition, both of which are discussed in this review.
View Article and Find Full Text PDFEarly-life stress caused by the deprivation of maternal care has been shown to have long-lasting effects on the hypothalamic-pituitary-adrenal (HPA) axis in offspring of uniparental mammalian species. We asked if deprivation of maternal care in biparental species alters stress responsiveness of offspring, using a biparental avian species--the zebra finch, Taeniopygia guttata. In our experiment, one group of birds was raised by both male and female parents (control), and another was raised by males alone (maternally deprived).
View Article and Find Full Text PDFZebra finches are a highly social and monogamous avian species. In the present study, we sought to determine the effect of social isolation (separation from the flock) in a novel environment with and without a conspecific present on the adrenocortical activity of paired and unpaired individuals of this species. With regard to paired birds, we hypothesized that the presence of the mate during isolation from the group would act as a social buffer against the stressful effects of isolation.
View Article and Find Full Text PDFMonoamines are implicated in the modulation of adult hippocampal neurogenesis in depression models and following chronic antidepressant treatment. Given the key role of Sonic hedgehog (Shh) in adult neurogenesis, we examined whether monoaminergic perturbations regulate the expression of Shh or its co-receptors Smoothened (Smo) and Patched (Ptc). Combined depletion of both serotonin and norepinephrine with para-chlorophenylalanine (PCPA) resulted in a significant decrease in Smo and Ptc mRNA within the dentate gyrus subfield of the hippocampus.
View Article and Find Full Text PDFStress regulation of brain-derived neurotrophic factor (BDNF) is implicated in the hippocampal damage observed in depression. BDNF has a complex gene structure with four 5' untranslated exons (I-IV) with unique promoters, and a common 3' coding exon (V). To better understand the stress regulation of BDNF, we addressed whether distinct stressors differentially regulate exon-specific BDNF transcripts in the postnatal and adult hippocampus.
View Article and Find Full Text PDFThe purpose of this study was to test whether sex steroid actions are necessary for courtship and pairing in socially monogamous birds. We examined the effects of an aromatase inhibitor, 1,4,6-androstatriene-3,17-dione (ATD), combined with an anti-androgen, flutamide (F), on the behavior and pairing status of initially unpaired male and female zebra finches (Taeniopygia guttata). In the first experiment, 24 adult males were implanted with either a combination of ATD and flutamide or empty implants.
View Article and Find Full Text PDFElectroconvulsive seizure (ECS) induces structural remodelling in the adult mammalian brain, including an increase in adult hippocampal neurogenesis. The molecular mechanisms that underlie this increase in the proliferation of adult hippocampal progenitors are at present not well understood. We hypothesized that ECS may recruit the Sonic hedgehog (Shh) pathway to mediate its effects on adult hippocampal neurogenesis, as Shh is known to enhance the proliferation of neuronal progenitors and is expressed in the adult basal forebrain, a region that sends robust projections to the hippocampus.
View Article and Find Full Text PDFBrain-derived neurotrophic factor (BDNF) is expressed at high levels in the hippocampus, where it has been implicated in physiological functions such as the modulation of synaptic strength as well as in the pathophysiology of epileptic seizures. BDNF expression is highly regulated and the BDNF gene can generate multiple transcript isoforms by alternate splicing of four 5' exons (exons I-IV) to one 3' exon (exon V). To gain insight into the regulation of different BDNF transcripts in specific hippocampal subfields during postnatal development, exon-specific riboprobes were used.
View Article and Find Full Text PDFAntidepressants are known to increase brain derived neurotrophic factor (BDNF) mRNA in the adult rat brain. The BDNF gene has four differentially regulated promoters that generate four transcript forms, each containing a unique non-coding 5' exon (exon I-IV) and a common 3' coding exon. Using in situ hybridization with exon-specific riboprobes, we have examined whether diverse classes of antidepressants recruit a single or multiple BDNF promoters to regulate BDNF mRNAs.
View Article and Find Full Text PDF