The UiO-66-NH aerogel has been designed to remove As(III) and As(V) in the full pH range with a long lifetime. The efficiency of the aerogel for trace removal from river water samples at the sub-ppb level has been demonstrated. The feasibility for practical uses has been evaluated by breakthrough experiments operated at a liquid hourly space velocity (LHSV) of 38 h using a real water sample with a significant capacity of 284 mg g.
View Article and Find Full Text PDFThe cycloaddition of CO to epoxides under mild conditions is a growing field of research and a viable strategy to recycle CO in the form of cyclic carbonates as useful intermediates, solvents, and additives. This target requires readily accessible and recyclable catalysts whose synthesis does not involve expensive monomers, multistep procedures, coupling reagents, etc. Additionally, the catalysts should be active under atmospheric pressure and tolerate impurities such as methane and HS.
View Article and Find Full Text PDFA great challenge exists in finding safe, simple, and effective delivery strategies to bring matters across cell membrane. Popular methods such as viral vectors, positively charged particles and cell penetrating peptides possess some of the following drawbacks: safety issues, lysosome trapping, limited loading capacity, and toxicity, whereas electroporation produces severe damages on both cargoes and cells. Here, we show that a serendipitously discovered, relatively nontoxic, water dispersible, stable, negatively charged, oxidized carbon nanoparticle, prepared from graphite, could deliver macromolecules into cells, without getting trapped in a lysosome.
View Article and Find Full Text PDF