Publications by authors named "Sunando Datta"

Sorting nexins (SNX) are a family of proteins containing the Phox homology domain, which shows a preferential endo-membrane association and regulates cargo sorting processes. Here, we established that SNX32, an SNX-BAR (Bin/Amphiphysin/Rvs) sub-family member associates with SNX4 via its BAR domain and the residues A226, Q259, E256, R366 of SNX32, and Y258, S448 of SNX4 that lie at the interface of these two SNX proteins mediate this association. SNX32, via its PX domain, interacts with the transferrin receptor (TfR) and Cation-Independent Mannose-6-Phosphate Receptor (CIMPR), and the conserved F131 in its PX domain is important in stabilizing these interactions.

View Article and Find Full Text PDF

The endocytic pathway has an intricate network of vesicular compartments carrying a variety of proteins referred to as cargoes. Endosomal trafficking is exclusively required to transport these cargoes through various intracellular routes for their delivery to the site of action. Among these, recycling of cargoes to the plasma membrane is a crucial pathway for the efficient functioning of the cell.

View Article and Find Full Text PDF

The endosomal recycling pathway plays a crucial role in diverse physiologically important biological processes such as cell-to-cell signaling, nutrient uptake, immune response, and autophagy. A selective subset of these recycling cargoes, mostly transmembrane proteins, is retrieved from endosomes to the trans-Golgi network (TGN) by a retrograde transport process. Endosome-to-TGN retrograde trafficking is crucial for maintaining cellular homeostasis and signaling by preventing proteins and lipids from degradation in the lysosome.

View Article and Find Full Text PDF

Invasion in various cancer cells requires coordinated delivery of signaling proteins, adhesion proteins, actin-remodeling proteins and proteases to matrix-degrading structures called invadopodia. Vesicular trafficking involving SNAREs plays a crucial role in the delivery of cargo to the target membrane. Screening of 13 SNAREs from the endocytic and recycling route using a gene silencing approach coupled with functional assays identified syntaxin 7 (STX7) as an important player in MDA-MB-231 cell invasion.

View Article and Find Full Text PDF

Entamoeba histolytica is a protozoan responsible for several pathologies in humans. Trophozoites breach the intestinal site to enter the bloodstream and thus traverse to a secondary site. Macropinocytosis and phagocytosis, collectively accounting for heterophagy, are the two major processes responsible for sustenance of Entamoeba histolytica within the host.

View Article and Find Full Text PDF

Entamoeba histolytica causes amoebiasis which is a major health concern in developing countries. E. histolytica pathogenicity has been implicated to a large repertoire of small GTPases which switch between the inactive GDP bound state and the active GTP bound state with the help of guanine nucleotide exchange factors (GEFs) and GTPase activating protein (GAPs).

View Article and Find Full Text PDF

ARL5B, an ARF-like small GTPase localized to the trans-Golgi, is known for regulating endosome-Golgi trafficking and promoting the migration and invasion of breast cancer cells. Although a few interacting partners have been identified, the mechanism of the shuttling of ARL5B between the Golgi membrane and the cytosol is still obscure. Here, using GFP-binding protein (GBP) pull-down followed by mass spectrometry, we identified heat shock cognate protein (HSC70) as an additional interacting partner of ARL5B.

View Article and Find Full Text PDF

Collective cell migration (CCM), in which cell-cell integrity remains preserved during movement, plays an important role in the progression of cancer. However, studies describing CCM in cancer progression are majorly focused on the effects of extracellular tissue components on moving cell plasticity. The molecular and cellular mechanisms of CCM during cancer progression remain poorly explored.

View Article and Find Full Text PDF

Gold nanoclusters (AuNCs) synthesized within a protein (Human Serum Albumin, HSA) template exhibited intense red luminescence accompanied by a quantum yield >10% and remarkable photo and cluster-core stability for a prolonged period (more than a year). These photoluminescent nanoclusters (NCs) were resistant to chemical and thermal perturbations but break down selectively and highly sensitively in the presence of mercury, Hg(ii), ions. The AuNCs were efficient in quantifying Hg(ii) ions in solution as well as bound to the hormone insulin.

View Article and Find Full Text PDF

Remodelling of the actin cytoskeleton in response to external stimuli is obligatory for many cellular processes in the amoebic cell. A rapid and local rearrangement of the actin cytoskeleton is required for the development of the cellular protrusions during phagocytosis, trogocytosis, migration, and invasion. Here, we demonstrated that EhC2B, a C2 domain-containing protein, is an actin modulator.

View Article and Find Full Text PDF

A variety of metastatic cancer cells use actin-rich membrane protrusions, known as invadopodia, for efficient ECM degradation, which involves trafficking of proteases from intracellular compartments to these structures. Here, we demonstrate that in the metastatic breast cancer cell line MDA-MB-231, retromer regulates the matrix invasion activity by recycling matrix metalloprotease, MT1-MMP. We further found that MT2-MMP, another abundantly expressed metalloprotease, is also invadopodia associated.

View Article and Find Full Text PDF

Entamoeba histolytica, the causative agent of amoebic dysentery, liver abscess and colitis, exploits its vesicular trafficking machinery for survival and virulence. Rab family of small GTPases play a key role in the vesicular transport by undergoing the GTP/GDP cycle which is central to the biological processes. Amoebic genome encodes several atypical Rab GTPases which are unique due to absence of conserved sequence motif(s) or atypical residues in their catalytic site [Saito-Nakano et al.

View Article and Find Full Text PDF

Rab GTPases constitute the largest subgroup in the Ras superfamily of GTPases. It is well established that different Rab GTPases are localized in discrete subcellular localization and regulate the membrane trafficking in nearly all eukaryotic cells. Rab GTPase diversity is often regarded as an expression of vesicular trafficking complexity.

View Article and Find Full Text PDF

Vps29 is the smallest subunit of retromer complex with metallo-phosphatase fold. Although the role of metal in Vps29 is in quest, its metal binding mutants has been reported to affect the localization of the retromer complex in human cells. In this study, we report the structural and thermodynamic consequences of these mutations in Vps29 from the protozoan parasite, Entamoeba histolytica (EhVps29).

View Article and Find Full Text PDF

The endosomal protein-sorting machineries play vital roles in diverse physiologically important cellular processes. Much of the core membrane-sorting apparatus is conserved in evolution, such as retromer, which is involved in the recycling of a diverse set of cargoes via the retrograde trafficking route. Here, in an RNAi-based loss-of-function study, we identified that suppression of SNX12 leads to a severe blockage in CIM6PR (also known as IGF2R) transport and alters the morphology of the endocytic compartments.

View Article and Find Full Text PDF

The human gut parasite uses a multifunctional virulence factor, Hgl, a cell surface transmembrane receptor subunit of Gal/GalNAc lectin that contributes to adhesion, invasion, cytotoxicity and immune response in the host. At present, the physiologic importance of Hgl receptor is mostly known for pathogenicity of . However, the molecular mechanisms of Hgl trafficking events and their association with the intracellular membrane transport machinery are largely unknown.

View Article and Find Full Text PDF

One of the hallmarks of amoebic colitis is the detection of (Eh) trophozoites with ingested erythrocytes. Therefore, erythrophagocytosis is traditionally considered as one of the most important criteria to identify the pathogenic behavior of the amoebic trophozoites. Phagocytosis is an essential process for the proliferation and virulence of this parasite.

View Article and Find Full Text PDF

Entamoeba histolytica, the causative agent of amoebic colitis and liver abscess in human, ingests the intestinal bacteria and variety of host cells. Phagocytosis of bacteria by the amebic trophozoite has been reported to be important for the virulence of the parasite. Here, we set out to characterize different stages of phagocytosis of type 1 E.

View Article and Find Full Text PDF

The enteric protozoan parasite, Entamoeba histolytica, an etiological agent of amebiasis, is involved in the adhesion and destruction of human tissues. Worldwide, the parasite causes about 50 million cases of amebiasis and 100,000 deaths annually. EhRabX3, a unique amoebic Rab GTPase with tandem G-domains, possesses an unusually large number of cysteine residues in its N-terminal domain.

View Article and Find Full Text PDF

Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out.

View Article and Find Full Text PDF

Autophagy is a lysosomal degradation pathway that degrades cytosolic constituents, including whole organelles and intracellular pathogens. Previous studies on various autophagy related genes revealed the importance of the Atg12-Atg5-Atg16 complex in autophagy. Atg16L1 is an effector of Golgi-resident Rab33B and the molecular mechanism of the interaction of Rab33B with either Atg16L1 or in complex with Atg5 is still elusive.

View Article and Find Full Text PDF

The enteric protozoan parasite, Entamoeba histolytica, is the causative agent of amoebic dysentery, liver abscess and colitis in human. Vesicular trafficking plays a key role in the survival and virulence of the protozoan and is regulated by various Rab GTPases. EhRabX3 is a catalytically inefficient amoebic Rab protein, which is unique among the eukaryotic Ras superfamily by virtue of its tandem domain organization.

View Article and Find Full Text PDF

The pathogenic amoeba Entamoeba histolytica is one of the causative agents of health hazards in tropical countries. It causes amoebic dysentery, colitis and liver abscesses in human. Iron is one of the essential nutritional resources for survival and chronic infection caused by the amoeba.

View Article and Find Full Text PDF

The protozoan parasite Entamoeba histolytica causes a wide spectrum of intestinal infections. In severe cases, the trophozoites can breach the mucosal barrier, invade the intestinal epithelium and travel via the portal circulation to the liver, where they cause hepatic abscesses, which can prove fatal if left untreated. The host Extra Cellular Matrix (ECM) plays a crucial role in amoebic invasion by triggering an array of cellular responses in the parasite, including induction of actin rich adhesion structures.

View Article and Find Full Text PDF

Retromer, a peripheral membrane protein complex, plays an instrumental role in host of cellular processes by its ability to recycle receptors from endosomes to the trans-Golgi network. It consists of two distinct sub-complexes, a membrane recognizing, sorting nexins (SNX) complex and a cargo recognition, vacuolar protein sorting (Vps) complex. Small GTPase, Rab7 is known to recruit retromer on endosomal membrane via interactions with the Vps sub-complex.

View Article and Find Full Text PDF