Publications by authors named "Sun-Young Woo"

We report on the formation of counterpropagating density gradients in poly([2-dimethylaminoethyl] methacrylate) (PDMAEMA) brushes featuring spatially varying quaternized and betainized units. Starting with PDMAEMA brushes with constant grafting density and degree of polymerization, we first generate a density gradient of quaternized units by directional vapor reaction involving methyl iodide. The unreacted DMAEMA units are then betainized through gaseous-phase betainization with 1,3-propanesultone.

View Article and Find Full Text PDF

Single-walled carbon nanotube (SWCNTs-)-small organic molecule hybrid materials are promising candidates for achieving high thermoelectric (TE) performance. In this study, we synthesized rod-coil amphiphilic molecules, that is, tri(ethylene oxide) chain-attached bis(bithiophenyl)-terphenyl derivatives ( and ). Supramolecular functionalization of SWCNTs- with or induced charge-transfer interactions between them.

View Article and Find Full Text PDF

Amphiphilic peptides of different lengths were simulated with lipid bilayers composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine (lysoMPC) in different ratios. Simulations of lipid bilayers without peptides show that the bilayers with more lysoMPC become more disordered and thinner. Amphiphilic peptides added to this simulation do not insert into the DMPC bilayer at a low peptide/lipid ratio (P/L ≤ 1/50), while they do insert into the DMPC/lysoMPC bilayer and form a toroidal pore even at such a low P/L ratio, where the pore edge is surrounded by lysoMPC rather than by DMPC.

View Article and Find Full Text PDF

Melittin and its analogue MelP5 (five mutations T10A, R22A, K23A, R24Q, and Q26L of melittin) were simulated with lipid bilayers at different peptide/lipid molar ratios using all-atom and coarse-grained (CG) force fields. In CG simulations, both melittin and MelP5 insert into the bilayer at high concentration, while at low concentration only MelP5 can do so, showing the increased membrane permeability of MelP5 because five mutations weaken the electrostatic repulsion between peptides and strengthen the hydrophobic interactions between peptides and lipid tails, in quantitative agreement with experiments. In particular, aggregation of 6-8 MelP5 leads to pore formation, as also suggested by experiments.

View Article and Find Full Text PDF

Peptides E and K, which are synthetic coiled-coil peptides for membrane fusion, were simulated with lipid bilayers composed of lipids and cholesterols at different ratios using all-atom models. We first calculated free energies of binding from umbrella sampling simulations, showing that both E and K peptides tend to adsorb onto the bilayer surface, which occurs more strongly in the bilayer composed of smaller lipid headgroups. Then, unrestrained simulations show that K peptides more deeply insert into the bilayer with partially retaining the helical structure, while E peptides less insert and predominantly become random coils, indicating the structural transition from helices to random coils, in quantitative agreement with experiments.

View Article and Find Full Text PDF

We performed coarse-grained (CG) molecular dynamics simulations of trimeric α-helical coiled coils grafted with poly(ethylene glycol) (PEG) of different sizes and conjugate positions and the self-assembled micelle of amphiphilic trimers. The CG model for the trimeric coiled coil is verified by comparing the α-helical structure and interhelical distance with those calculated from all-atom simulations. In CG simulations of PEGylated trimers, the end-to-end distances and radii of gyration of PEGs grafted to the sides of peptides become shorter than those of free PEGs in water, which agrees with experiments.

View Article and Find Full Text PDF

ZnO-PEG-ZnO complex film was fabricated by forming ZnO thin film on the Polyethyleneglycol (PEG) thin film. ZnO thin films were formed by an electrostatic method and ZnO-PEG complex films were fabricated by adsorbing PEG on the ZnO thin films surface with hydrogen bond. The electrochemical characteristic of the ZnO-PEG-ZnO film was analyzed by EQCM techniques.

View Article and Find Full Text PDF

Lupus erythematosus profundus, a form of chronic cutaneous lupus erythematosus, is a rare inflammatory disease involving in the lower dermis and subcutaneous tissues. It primarily affects the head, proximal upper arms, trunk, thighs, and presents as firm nodules, 1 to 3 cm in diameter. The overlying skin often becomes attached to the subcutaneous nodules and is drawn inward to produce deep, saucerized depressions.

View Article and Find Full Text PDF

Phototoxicity can be either harmful and induce adverse skin reactions or beneficial and be used therapeutically as in psoralen and UV-A or photodynamic therapy. Hundreds of medicinal plants are widely used in Asia and Western countries in oriental medicine, yet the phototoxicity of oriental medicinal plants is an understudied area. In this contribution, the authors discuss some methods used to measure the phototoxicity of plants and give an overview of the results of their previous and ongoing studies into the phototoxicity of medicinal plants.

View Article and Find Full Text PDF

Background: Acquired syndactyly is a rare disease that occurs mostly after disease, trauma, or other inflammatory conditions. It is usually treated by surgical incision with a flap or full-thickness skin graft, which is very invasive and requires hospitalization.

Objective: The objective was to treat acquired syndactyly with an epidermal graft by suction blister after radiosurgery, because this procedure is much less invasive and can be performed in an outpatient base.

View Article and Find Full Text PDF