Publications by authors named "Sun-Woong Bae"

Aim: To investigate the role of autophagy in MTA-induced odontoblastic differentiation of human dental pulp cells (HDPCs).

Methodology: In MTA-treated HDPCs, odontoblastic differentiation was assessed based on expression levels of dentine sialophosphoprotein (DSPP) and dentine matrix protein 1 (DMP1), alkaline phosphatase activity (ALP) activity by ALP staining and the formation of mineralized nodule by Alizarin red S staining. Expression of microtubule-associated protein 1A/1B-light chain3 (LC3), adenosine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signalling molecules and autophagy-related genes was analysed by Western blot analysis and Acridine orange staining was used to detect autophagic lysosome.

View Article and Find Full Text PDF

Microglia-mediated neuroinflammatory responses are well known to inhibit neurogenesis in the dentate gyrus (DG) of the adult hippocampus, and growing evidence indicates that therapeutic intervention to suppress microglial activation could be an effective strategy for restoring the impaired neurogenesis and memory performance. In the present study, we investigated the effects of water-soluble arginyl-diosgenin analog (Arg-DG) on the adult hippocampal neurogenesis using a central LPS-induced inflammatory mice model, along with the fundamental mechanisms in vivo and in vitro using LPS-stimulated microglial BV2 cells. Arg-DG (0.

View Article and Find Full Text PDF

Diosgenin, a precursor of steroid hormones in plants, is known to exhibit diverse pharmacological activities including anti-inflammatory properties. In this study, (3β, 25R)‑spirost‑5‑en‑3‑oxyl (2‑((2((2‑aminoethyl)amino)ethyl)amino)ethyl) carbamate (DGP), a new synthetic diosgenin derivative incorporating primary amine was used to investigate its anti-inflammatory effects and underlying mechanisms of action in lipopolysaccharide (LPS)-stimulated microglial BV2 cells. Pretreatment with DGP resulted in significant inhibition of nitric oxide (NO) synthesis, and down-regulation of nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in LPS-stimulated microglial BV2 cells.

View Article and Find Full Text PDF